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Abstract. We develop techniques to calculate important measures in
evolutionary biology by encoding to CNF formulas and using powerful
SAT solvers. Comparing evolutionary trees is a necessary step in tree re-
construction algorithms, locating recombination and lateral gene trans-
fer, and in analyzing and visualizing sets of trees. We focus on two pop-
ular comparison measures for trees: the hybridization number and the
rooted subtree-prune-and-regraft (rSPR) distance. Both have recently
been shown to be NP-hard, and efficient algorithms are needed to com-
pute and approximate these measures. We encode these as a Boolean
formula such that two trees have hybridization number k (or rSPR dis-
tance k) if and only if the corresponding formula is satisfiable. We use
state-of-the-art SAT solvers to determine if the formula encoding the
measure has a satisfying assignment. Our encoding also provides a rich
source of real-world SAT instances, and we include a comparison of sev-
eral recent solvers (minisat, adaptg2wsat, novelty+p, Walksat, March
KS and SATzilla).

1 Introduction

Phylogenies, or evolutionary histories, play a central role in biology. While tradi-
tionally represented as trees, due to evolutionary processes such as hybridization,
horizontal gene transfer and recombination [16], the relationship between many
species is better represented by networks, or directed graphs. These nontree
events connect nodes from different branches of a tree, and they are usually
called reticulations (see Figure 1). Given two trees that represent the evolu-
tionary history of different genes of a set of species, the hybridization number
between the trees characterizes the number of reticulation events needed to ex-
plain the evolution of the set of species. With the recent explosion in biological
data available, it is now possible to compute multiple phylogenetic trees for a
set of taxa (species), based on many different gene sequences. Calculating the
differences between species and gene trees very efficiently is essential to building
evolutionary histories, and in turn to understanding the underlying properties
of the species. Further, comparing phylogenies play important roles in locating
recombination and lateral gene transfers, and analyzing searches in treespace.

Our primary focus is on calculating the hybridization number. The related
rooted subtree-prune-and-reconnect (rSPR) distance is often used as a surrogate.
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Fig. 1. Hybridization events: a) and b) represent two different gene trees on the same
set of species, and c) and d) show two possible evolutionary scenarios. In c), species 2
and 4 hybridize (combine genetic information) to form a new species 3. In d), we show
lateral gene transfer where some of the genetic information from species 3 is derived
along one lineage as in tree in a), while other information is derived along the lineages
shown in b).

rSPR captures individual hybridization events but misses an important acyclicity
condition that taxa cannot have themselves as ancestors. Further, while often
similar in size, there exist instances where the difference between the rSPR and
hybridization number are arbitrarily large [5].

Calculcating tree measures is of great interest, and the focus of much recent
work. Bordewich and Semple [6] showed that the hybridization number is NP-
hard and fixed parameter tractable, by relating it with an appropriately defined
agreement forest. Agreement forests were developed for evolutionary tree metrics
in the pioneering work of Hein et al. [14] and Allen and Steel [1] that linked
the tree distance to the size of the maximum agreement forest (MAF). With
the development of a MAF for the rooted subtree-prune-and-reconnect (rSPR)
distance [5] (see Figure 2), Bonet et al. [4] showed these algorithms are a 5-
approximation for rSPR distance. Algorithms for biologically relevant restricted
cases of rSPR were also developed by Hallett and Lagergren [13] and Beiko
and Hamilton [3]. Nakhleh et al. [20] developed a very fast heuristic for rSPR
distance, which due to its basis on maximum agreement subtrees, also yields
bounds on the hybridization number. Wu [28] encodes the rSPR problem into
an integer linear programming instance, achieving good results for the rSPR
problem only. To find exact answers for hybridization numbers, Linz et al. [7]
used clever combinatorial characterizations to yield an exhaustive search that
does well for surprisingly large values.

We have developed new software tools to calculate hybridization number and
rSPR distance, by transforming these into satisfiability (SAT) questions. Using
combinatorial characterizations and insights of past work, we can often reduce
the scope of the problem to several smaller subproblems for hybridization, or a
single smaller problem for rSPR. We use two different approaches to calculat-
ing these measures: exact calculation and an upper bound heuristic. Our novel
contribution is the use of powerful SAT solvers to finish this final part of the
computation on the reduced trees. We do this by encoding the problem as a
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Fig. 2. rSPR Move: A rooted SPR move breaks off a subtree from the first tree and
reattaches the subtree to another tree. For technical reasons, we represent our rooted
trees as “planted trees” and allow rSPR moves to reattach subtree to the edge of the
root, as done with the rSPR move above.

Boolean formula such that two trees have some particular or hybrid number
(or rSPR distance) if and only if the corresponding formula is satisfiable. Then
we give the formula as input to one of the best SAT solvers. Due to the large
community focused on techniques to solve SAT more efficiently, there are many
different choices of SAT solvers, optimized for differing criteria.

For our upper bound heuristic (SAT Descent), we work down from an upper
bound (instead of eliminating possibilities counting up from zero). In this case we
do a comparison among several solvers. They are walksat [24, 25], adaptg2wsat
[8], novelty+p [8], minisat [10, 11], SATzilla [29] and March KS [15]. Notice
that we compare all kinds of different solvers: local search algorithms (the first
three), DPLL with learning (minisat), SAT solver portfolio (SATzilla) and solver
specialized on random instances (March KS). The performance of minisat on
our instances was worse in general than the performance of the local search
solvers. Using local search algorithms yields excellent results in both accuracy
and performance. For example, we find solutions for biological data sets in 48
seconds that take over 11 hours with the exact program, HybridNumber and do
not finish after two days of compute time using the complete solver minisat.

This paper is organized as follows: we give background on tree measures
and agreement forests in Section 2. Section 3 details our methods, with more
information on the SAT encoding in Section 4. Section 5 describes the data
analyzed. Results are in Section 6, followed by discussion and future work in
Section 7.

2 Hybridization Networks and Agreement Forests

The recent theoretical results have linked tree measures to the size of maximum
agreement forests [14]. This link has been used to show NP-hardness, fixed pa-
rameter tractability, and is the basis for approximation algorithms. Roughly,
each measure corresponds to the size of the appropriately defined maximum
agreement forest. For a more thorough treatment, see [5, 18, 26].
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Subtree Prune and Regraft (SPR): A subtree prune and regraft (SPR)
operation [1] on a binary tree T is defined as cutting any edge and thereby
pruning a subtree t, then regrafting the subtree by the same cut edge to a new
vertex obtained by subdividing a pre-existing edge in T − t. We apply a forced
contraction to maintain the binary property of the resulting tree (see Figure 2).
The SPR distance between two trees T1 and T2 is the minimal number of SPR
moves needed to transform T1 into T2. When working with rooted trees, we refer
to this distance as rooted SPR or rSPR. Bordewich and Semple [5] showed
that the rSPR distance of two trees is the same as the size of an appropriately
defined maximum agreement forest for rooted trees of the two trees. This number
is related to another measure between trees that we next define.
Hybridization Number: A hybridization network on a leaf set X [5, 26]
is a rooted acyclic directed graph with root ρ in which

– X is the set of leaves (vertices of outdegree zero);
– d+(ρ) ≥ 2;
– for all the vertices v with d+(v) = 1, we have d−(v) ≥ 2.

Let d−(v) be the indegree of v and d+(v) be the outdegree of v. The vertices
with indegree at least two represent the hybridization vertices. Now, we define
the hybridization number of a hybridization network H with root ρ as

h(H) =
∑
v 6=ρ

(d−(v)− 1).

Let T be a rooted phylogenetic tree and H a hybridization network. We say
H displays T [5, 26] if T can be obtained from H by first deleting a subset of
edges of H and any resulting isolated vertices, and then contracting edges. Then
given two trees T1 and T2,

h(T1, T2) = min{h(H) : H is a hybridization network that displays T1and T2}.

We define the hybridization number of two trees T1 and T2 as the minimal
hybridization number of all hybridization network H that display T1 and T2.
Agreement Forest: Originally linked to tree measures [14], agreement forests
are an essential tool for calculating and showing hardness for tree measures.
Roughly, an agreement forest for T1 and T2 with identical leaf set X, is a set
of subtrees that occur in both the initial trees T1 and T2, where:

1. The subtrees partition the leaf set X into {X0, . . . , Xk}.
2. The subtrees occur as induced subtrees of T1 and T2. i.e. for each i, 0 ≤ i ≤ k,
T1 restricted to the set of leaves Xi, and T2 restricted to the set of leaves Xi

are the ith subtree.
3. The subtrees are vertex disjoint in both T1 and T2.

For two trees, T1 and T2, with the same leaf set, a maximum agreement forest
(MAF) is an agreement forest with the minimal number of subtrees. Allen and
Steel [1] show the size of the MAF corresponds to another tree measure, the
tree-branch-and-reconnect (TBR) distance. Augmenting this forest definition to
handle rooted trees, Bordewich and Semple [5] link these new MAFs to rSPR
distance. Figure 3 illustrates agreement forests for rSPR distance.
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Fig. 3. Agreement Forests: F and F ′ are two possible forests for the trees T and T ′. F
is also maximal for rSPR, but its associated graph, G(F ) contains a cycle and is thus
not a good agreement forest for hybridization. The second, larger forest, is acyclic, and
is the maximum agreement forest for hybridization. The rSPR distance is 2, while the
hybrid number is 3.

Hybrid Number and Acyclicity of the Forest: We define the graph, GF
of a MAF F of two trees T1 and T2 as follows: the nodes are the trees of F ,
and there is an edge from one node (F1) to (F2) corresponding to two trees
of F if the root of (F1) is a descendant of the root of (F2) in either T1 or T2.
Adding the simple condition that the graph of the forest is acyclic yields a MAF
for hybridization number. That is, a forest that is maximal with respect to all
agreement forests that have acyclic associated graphs has size equivalent to the
hybridization number of the two trees [6]. See Figure 3.

Hardness Results: Both of these measures, hybridization number and rSPR
distance have been shown to be NP-hard and fixed parameter tractable [5, 6].
The following operations help reduce the size of the trees and provide additional
efficiency for our methods by “shrinking” the size of the problem encoded:

Subtree Reduction (Rule 1 of [5]): Replace any pendant subtree that
occurs identically in both trees T1 and T2 by a single leaf with a new label.

Our second rule looks at clusters in trees. While not part of the fixed parame-
ter tractability reduction for hybridization number, it gives important reductions
on the sizes of the trees and improves the performance. A is a cluster for T1 and
T2 if there is a node in each tree that has A as its set of descendants in X. We
note that this reduction preserves hybridization number but does not preserve
rSPR distance [2]:

Cluster Reduction (Rule 3 of [2]): Let T1 and T2 be two rooted binary
X-trees, and A ⊂ X a cluster of both T1 and T2. Then,

h(T1, T2) = h(T1 | A, T2 | A) + h(T1a, T2a)

where T1a (T2a) is the result of substituting the subtree of T1 (T2) having leaf
set A by the new leaf a and T1 | A (T2 | A) is the restriction of T1 (T2) to A.
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3 Methods

We develop four related algorithms for calculating the tree measures: exact so-
lutions (‘SAT Ascent’) and upper bound heuristics (‘SAT Descent’) for both
hybridization number and rSPR distance. Our input is two trees, T1 and T2,
that represent the evolution of two different genes of a set of species. Our meth-
ods break into several parts:

1. Efficient preprocessing to reduce size, using known reductions (see §2),
2. Encoding the questions “hybridNumber(T1, T2) = r?” and “drSPR(T1, T2) =
r?” as Boolean formulas,

3. Using fast heuristics [20] to give starting upper bounds, and
4. Using different search strategies and solvers to answer these questions.

Efficient Preprocessing: Each of the reduction rules can be performed in
linear time, following a clever coding of trees by Day [9]. His coding stores
sufficient information about each internal vertex to identify internal structure.
This takes O(1) space per internal vertex, allowing linear time algorithms for
the reduction rules presented in the previous section (see [4] for more details).

Encoding: We describe the SAT encoding in more detail in the next section.

Efficient Heuristics: We use RIATA-HGT from the PhyloNet program suite
[20] to give starting points for our upper bounds. While not an approximation
algorithm (since families of trees can be constructed whose distance is fixed,
but whose distance found by the algorithm is arbitrarily large), RIATA-HGT
performs very well in practice (see Figures 4 and 5). It takes the input trees and
calculates a maximum agreement subtree. The maximum agreement subtree is
added to the forest and then used as a “backbone” and the algorithm is then
repeated for each subtree hanging from the backbone. While not explicitly stated,
the resulting forest is acyclic by construction and thus gives an upper bound for
both rSPR distance and hybridization number.

Different Search Strategies and SAT Solvers: We use Minisat [10, 11]
to find exact solutions for rSPR and hybrid number. On the other hand, we
use Walksat [24, 25], adaptg2wsat [8], novelty+p [8] for the upper bounds of
both measures. We use the UBCSAT implementation [27] for the latter two
since it was significantly faster than the stand-alone versions. We compare the
performance of these three local search solvers among themselves and also with
the performance of the complete solvers minisat,March KS and SATzilla. As we
will see in the experimentation, the local search algorithms work much faster in
general.

Software: We built four different methods that calculate upper bounds for hy-
bridization numbers, upper bounds for drSPR, exact solutions for hybridization
number, and exact solutions for drSPR. The software is written in perl and java,
using the TreeJuxtaposer [19] java code base. All four have similar format, so,
we only describe the upper bound for hybridization numbers in detail:
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1. Preprocess by the reduction rules to yield smaller pairs of trees.
2. Find a starting upper bound for each pair using RIATA-HGT [20].
3. Starting with the upper bound, r, encode the formula for hybridization is r

and use a SAT solver to find a satisfiable assignment (i.e. a MAF).
4. Decrement r and loop to 3, until a satisfiable assignment is not found. Return
r + 1.

We similarly define the algorithm for upper bounds for drSPR. For the SAT
Ascent algorithm, we begin by looking for an agreement forest of size 1 and
work upwards until a forest is found.

4 Encoding

Our program takes pairs of phylogenetic trees on the same leaf set and a proposed
size for the MAF and produces SAT instances in DIMACS SAT format:
Input: Two trees, T1 and T2, and an integer r > 0.
Output: An encoding into a SAT instance, in the DIMACS SAT format.

The resulting formula will be satisfiable if the hybridization number (rSPR
distance) between T1 and T2 is ≤ r. We rely on the correspondence to agreement
forests, described in Section 2. Namely, that drSPR(T1, T2) = r iff there is a
maximum agreement forest for T1 and T2 of size r. Similarly, the hybridization
number of T1 and T2 is r iff there is a maximum acyclic agreement forest for T1

and T2 of size r. Thus, most of the encoding focuses on saying that a agreement
forest exists:

Literals: For each subtree i in the forest and leaf j from the original leaf set,
we have a literal lij which is true iff leaf j is part of subtree i in the agreement
forest. We have similar sets of literals for internal vertices of T1 and T2. We
also have literals to reduce the number of clauses needed (explained below) and
to represent the acyclic conditions. The number of literals is O(rn + r2). Since
r < n, this yields O(nr).

Clauses for Subtrees Partition Leaf Sets: It is easy to say that every leaf
is in at least one subtree, by having clauses for each leaf j, l0j ∨ l1j ∨ . . . ∨ lrj ,
that literally say, “leaf j is in subtree 0 or leaf j is in subtree 1 or . . . leaf j is in
subtree r. This takes O(rn) clauses.

To say that every leaf occurs in at most one subtree is more difficult. The
obvious encoding takes O(rn2). Following [17], we introduce O(rn) new literals,
sij and use them to reduce the number of clauses needed to O(rn). The intuition
for these new literals and corresponding clauses is that they encode

∑
i lij ≤ 1.

The new variables signal when leaf j occurs in some tree i, and the clauses ensure
that this happens for only one i.

Clauses for Subtrees Occurring as Induced Trees: The clauses below
assert that the r+ 1 subtrees occur in both T1 and T2. This is done in a similar
manner as above: we show that every internal vertex is in at most one subtree.
Note that we do not need to say that every internal node is in at least one
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subtree. We need new variables to say to which subtrees of the agreement forest
the internal vertices of T1 and of T2 belong to. If a rooted binary tree has n
leaves, then it has n− 1 internal vertices. For tree T1, we have variables vij , for
0 ≤ i ≤ r and 1 ≤ j ≤ n − 1 such that vij is true iff the jth internal vertex is
part of the ith subtree. Similarly, for tree T2, we have variables v′ij .

We will further have two sets of variables to reduce the number of clauses
needed: ti,j and t′i,j for i = 0, . . . , r and j = 1, . . . , n− 1 (these are similar to the
s variables used for the leaves of the trees). The clauses for the internal nodes
of the trees state:

1. Every internal vertex of T1 (and of T2) is in at most one subtree.
This follows the same idea as in the previous step with v and t for T1 and
with v′ and t′ for T2. This is done twice to require that all the internal
vertices of both the input trees occur at most once in the subtrees of the
forest.

2. If two leaves occur in a subtree, then internal vertices on the path between
them must also occur in the same subtree.
First, look at tree T1 (the clauses for T2 will be almost identical). For every
pair of leaves, j and k in T1, there exists a unique path between them of
internal vertices, vp1 , vp2 , . . . , vpx (x and the internal vertices on the path
depend on the leaves chosen and could be 0, if i = j, or up to n − 1). Our
clauses state that if j and k occur in subtree i, then so do the nodes on the
path between them: vp1 , vp2 , . . . , vpx

. So for i = 0, . . . , r and j, k = 1, . . . , n−1
we need the clauses saying

(lij ∧ lik)→ (vip1 ∧ vip2 ∧ . . . ∧ vipx
)

Note that the internal vertices and the paths depend on the particular tree.

Clauses for Checking that Subtrees are Equal: Once we have that the
leaves form subtrees, we add clauses to guarantee that the structure of the sub-
trees is the same in both T1 and T2. This is the last condition needed to have
that the subtrees form an rSPR agreement forest for T1 and T2. To do this, we
look at triples of all leaves and their structure in T1 and T2. If the structure
differs, then we add clauses preventing that triple of leaves from occurring in
the same tree. In the worst case, this takes O(rn3) clauses, but in practice it is
significantly smaller.

Clauses for Acyclic Conditions: For hybridization, the agreement forest
also needs to be acyclic. Adding variables to represent that there is a directed
edge between subtrees is O(r2). The clauses needed to encode the initial edges,
transitive closure of the edge relationship, and forbid cycles takes O(r3).

Expected Number of Clauses: The theoretical bound on the number of
clauses in this encoding is quite high, O(rn3) where n is the number of taxa in
the trees and r is the hybridization number (rSPR distance) that is encoded.
However, in practice, we see significantly smaller number of clauses generated
by the encoding. This large difference in sizes is due to the clauses needed to
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check that the internal substructure of the subtrees are equal. It is possible that
all the O(n3) triplets of taxa will differ in structure in T1 and T2, resulting in
O(rn3) clauses. In practice, most trees compared have are similar and as such
most of triplets agree, and few are needed. For example, the theoretical upper
bound for unreduced trees with 50 taxa and with a starting upper bound of
13 is 1,625,000. For a pair chosen at random from our simulated dataset, the
reduction rules shrunk the size of the trees to 39 taxa from the initial 50 taxa
and the starting upper bound is 13. The number of literals and clauses depend
on the size of the reduced tree pairs and the starting upper bound. They are
3,416 literals and 370,571 clauses, a huge reduction from the worst case bound
for the full trees and half of the bound calculated for the reduced trees.

5 Data

We analyze both biological and simulated data. The biological data set, from
the analysis of HybridNumber [7] and described more fully there, is from the
Poaceae (Grass) family. Hybridization is a well-recognized occurrence in grasses
[12], making this an excellent test data set. The data set consists of sequence data
for six loci: internal transcribed spacer of ribosomal DNA (ITS); NADH dehydro-
genase, subunit F (ndhF); phytochrome B (phyB); ribulose 1,5-biphosphate car-
boxylase/oxygenase, large subunit (rbcL); RNA polymerase II, subunit (rpoC2);
and granule bound starch synthase I (waxy). For each loci, a tree was built us-
ing the fastDNAmL program [21] by Heiko Schmidt [23]. As in [7], we looked at
pairs of trees, reduced to their common taxa. In all, we have 15 pairs of trees.
The pairs and the number of overlapping taxa are listed in Figure 4.

The simulated datasets were generated to capture small and medium dis-
tances between reasonably sized trees. All trees have 50 taxa. For each run, we
generated a “species” tree, and then 10 “gene” trees by making k rSPR-moves
from the species tree for k = 2, 4, 6, 8, 10, 12, 14. These give tree pairs with rSPR
distance at most k, since it is possible for some of the sequence of moves to
“cancel” each other out. The hybridization number could be larger than k, since
its corresponding maximum agreement forest is that for rSPR with additional
acyclic conditions. Each of the species trees was generated with Sanderson’s
r8s program [22], using Yule-Harding distribution. The program that alters the
species tree by k rSPR moves chooses a non-pendant edge uniformly and at
random (software written by the authors in Java). For each k, 10 trials were
generated, yielding 100 species-gene tree pairs, for a total of 700 pairs of trees.

6 Results

We show the results for the hybridization number algorithms. The rSPR distance
results have similar, and often worst running times, since cluster reduction rule
does not apply to rSPR distance. This rule often breaks the problem into rea-
sonably sized subproblems, speeding computation.
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Poaceae (Grass) Dataset: The results for this dataset are presented in Fig-
ure 4. Our exact solution algorithm does well at small cases, as HybridNumber
does but slows down for larger instances sooner. On the other hand, our SAT
Descent algorithm performs extremely well using the local search algorithm,
Walksat, finding the true number in 11 out of 12 of the known cases and doing
so in under five minutes time. Surprisingly, Walksat outperforms more recent lo-
cal search algorithms including adaptg2wsat (which recently won a silver medal
in SAT2007 competition in satisfiable random formula category). All the local
search algorithm outperformed the complete solvers, which often ran out of time
before completing the calculations. In Figure 4, we do not include the results for
March KS, since this solver performed very poorly on almost all these instances.
RIATA-HGT returns answers extremely quickly, all in less than 12 seconds, but
overestimates by average of 9%.

Simulated 50 Taxa Dataset: Figure 5 contains the graphs for the simulated
data for both accuracy and speed. Both HybridNumber and SAT Ascent solver
could not calculate the solutions for r ≥ 6 in the 24 hour time-limit used for
these experiments. Since the SAT Ascent solver’s results mirror HybridNumber,
we report only the latter. Our upper bound software did extremely well in both
accuracy and speed. By construction, SAT Descent with local search algorithms
always gave answers that were closer to the true answer. RIATA-HGT finished
in under 15 seconds for all runs. SAT Descent with local search algorithms com-
pleted all runs in less than 15 minutes. The standard deviations were omitted
from Figure 5 but are worth noting. For small values of k, they are below 5% for
the time and accuracy of both RIATA-HGT and SAT upper bound. The stan-
dard deviation for the time for RIATA-HGT remains below 2% for all values.
For all other algorithms, the standard deviations rise for both time and accuracy
to almost 20%, illustrating the variability of difficulty of problems even for small
and medium values.

7 Discussion & Conclusion

Encoding problems as SAT instances has positive and negative points. On the
negative side, we must build a SAT instance that may be even bigger than the
original problem. On the positive side, once the hard work of encoding is done,
we can use the variety of SAT tools to try many different search strategies to
improve our algorithms in both efficiency and time. In a way, it is like having
several solvers in one, since we can benefit from all the different tools that the
SAT community has developed over the years and from future improvements of
SAT solvers.

Our novel approach of encoding the NP-hard problems of calculating hy-
bridization number and rSPR distance into SAT instances yields an elegant and
efficient algorithm for estimating these measures. While not an exact answer,
our algorithms often find the true answer in a fraction of the time needed to
search for the exact solution. Given the ever-improving state of SAT-solvers,
these results will only improve, allowing for better bounds. Future work includes
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improving the encoding, finding tighter bounds via combinatorial analysis of the
inputs, and uses for related tree problems such as TBR distance.

One final observation is that our grass instances are an unusual case of com-
binatorial real problems better solved by local search algorithms than by DPLL
solvers. Even though the instances come from real data, we are encoding an
NP-hard problem of complexity similar to random instances, and local search
solvers win the Random Satisfiable category in competitions.
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trees # of Hybrid SAT RIATA SAT Descent
[23] taxa Number[7] Exact -HGT[20] w [24] a [8] n[8] m [11] z [?]

ndhf 40 14 ≥ 9 15 14 16 14 ≤ 15 16
phyB 11h 2d 11s 4m 24s 48s 6h 44s

ndhf 36 13 ≥ 9 16 13 17 14 ≤ 14 18
rbcl 11.8h 2d 11s 4m 28s 51s 6h 48s

ndhf 34 12 ≥ 9 15 12 15 12 ≤ 12 15
rpoC2 26.3 h 2d 7s 3m 14s 35s 6h 34s

ndhf 19 9 9 9 9 10 9 ≤ 9 10
waxy 5m 46h 3s 19s 4s 7s 6h 2m

ndhf 46 ≥ 15 ≥ 9 24 22 22 21 ≤ 20 22
xits 2d 2d 12s 3m 50s 1.2m 6h 1m

phyB 21 4 4 4 4 4 5 4 4
rbcl 1s 6s 4s 7s 4s 4s 3s 5s

phyB 21 7 7 7 7 7 7 7 10
rpoC2 3m 1.5m 3s 33s 11s 13s 77s 11s

phyB 14 3 3 3 3 3 4 3 3
waxy 1s 3s 2s 5s 3s 2s 2s 2s

phyB 30 8 8 9 8 9 9 8 10
xits 19s 1.5h 6s 1m 10s 11s 1.7h 10s

rbcl 26 13 9 16 14 15 15 ≤ 15 14
rpoC2 29.5h 2d 5s 1m 9s 10s 6h 36s

rbcl 12 7 7 7 7 7 7 7 8
waxy 4m 42s 1s 10s 3s 3s 40s 7s

rbcl 29 ≥ 9 ≥ 9 15 14 19 14 ≤ 15 19
xits 2d 2d 6s 271s 20s 1m 6h 40s

rpoC2 10 1 1 1 1 1 1 1 1
waxy 1 s 1s 1s 3s 1s 1s 1s 1s

rpoC2 xits 31 ≥10 ≥9 17 15 18 15 ≤ 15 18
2d 2d 7s 4m 18s 50s 6h 1h

waxy 15 8 8 10 9 10 9 8 9
xits 10m 1s 2s 13s 6s 11s 1m 14s

Fig. 4. The Grass (Poaceae) Data Set: We compare the exact solver, HybridNum-
ber [7], the fast heuristic, RIATA-HGT [20], and our program using the SAT encodings.
The data for HybridNumber in the third column is from [7]. First: HybridNumber finds
the exact solution, but due to the NP-hardness of the problem, often does not find a
solution. Second: The performance of the SAT Ascent solver which works upward from
the smallest distance until the true distance is found. Its performance echos Hybrid-
Number. Third: RIATA-HGT gives very quickly a reasonable, but not tight, upper
bound. Right: Our software gives excellent results in reasonable time. It employs five
different solvers: the incomplete solvers: Walksat [24, 25] and two high scoring solvers
from SAT 2007: adaptg2wsat and novelty+p [8] implemented in [27], as well as the com-
plete solvers minisat [11] and SATzilla [29]. Solutions listed as upper or lower bounds
did not halt before the time limit and estimates based on the log files are listed.
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Fig. 5. Simulated Data Set: 50-taxa trees were generated under the Yule-Harding
distribution to be the “species tree” and then for each distance and each species tree, 10
“gene trees” of that distance were generated. In both graphs, @ is RIATA-HGT [20], ◦
is the SAT Descent using Walksat [25], and + is the exact algorithm HybridNumber [7].
Due to the similarity in results to HybridNumber, the results for SAT Ascent solution
are omitted. All runs had a 24 hour time limit. This did not affect RIATA-HGT and
SAT Descent, but limited the runs that completed for HybridNumber to values 2 and
4. The left graph shows the hybridization number returned by the programs; the right
graph shows the time, in seconds, to accomplish the task.
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