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Abstract

Let Un,p be the random unary predicate and Tk the almost sure first-order theory
of Un,p under the linear ordering, where k is a positive integer and n−1/k � p(n) �
n−1/(k+1). For each k, we give an axiomatization for the theory Tk. We find a model
Mk of Tk of order type roughly that of Zk and show that no other models of Tk exist
of smaller size.

1 Introduction

Let n be a positive integer, and 0 ≤ p(n) ≤ 1. The random unary predicate Un,p is a
probability space over predicates U on [n] = {1, . . . , n} with the probabilities determined
by Pr[U(x)] = p(n), for 1 ≤ x ≤ n, and the events U(x) are mutually independent over
1 ≤ x ≤ n.

Let φ be a first-order sentence in the language with linear order and the unary predicate.
In [8], Shelah and Spencer showed that for every such sentence φ and for p(n) � n−1 or
n−1/k � p(n) � n−1/(k+1), there exists a constant aφ such that

lim
n→∞

Pr[Un,p |= φ] = aφ (1)

(The same result holds for 1 − p(n) � n−1 or n−1/k � 1 − p(n) � n−1/(k+1).) For each
positive integer k, let Tk be the almost sure theory of the linear ordering with n−1/k �
p(n) � n−1/(k+1). That is, for n−1/k � p(n) � n−1/(k+1),

Tk = {φ | lim
n→∞

Pr[Un,p |= φ] = 1}

Let T0 be the almost sure theory of the random unary predicate with p(n) � n−1. In
this paper, we give an axiomatization for each Tk and describe a model of each Tk, that is
smallest, in a sense that we will describe later.
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2 Spencer and St. John

By the work of Dolan [3], Un,p satisfies the Zero-One law for p(n) � n−1 and n−1 �
p(n) � n−1/2 (that is, for every φ, aφ = 0 or 1 in Equation 1). This gives that T0 and
T1 are complete theories. Dolan also showed that the Zero-One Law does not hold for
n−1/k � p(n) � n−1/(k+1), k > 1.

In an effort to keep the paper self-contained and accessible, we have included many def-
initions and concepts that the expert in the respective fields might wish to skip. Section 2
of this paper includes definitions from logic and from [8]. To illustrate the definitions, we
have included a section of Examples (Section 3). This section also includes the axiomati-
zation for the simpler cases. Section 4 contains an inductive definition of the axioms for
the higher cases and proofs that these do axiomatize the theory. In Section 5, we use the
axiomatization from Section 4 to characterize a model of each Tk.

A note on notation: we will use lower case Greek letters for first-order sentences
(φ, ψ, . . .), upper case Greek letters for sets of sentences (Γ,∆, . . .), and lower case Roman
letters to refer to elements in the universe (i, j, . . .).

2 Definitions

We begin this section with the definitions we need from first-order logic and finite model
theory (Section 2.1). Since we rely heavily on the definitions from [8], we have included them
in Section 2.2. A more thorough treatment of first-order logic can be found in Enderton [6],
of finite model theory in Ebbinhaus and Flum [5], and of the probabilistic method in Alon,
Spencer, and Erdős [1].

2.1 Definitions from First Order Logic

We concentrate on first-order logic over the basic operations {≤, U,=}. That is, we are
interested in sentences made up of = (equality), ≤ (linear order), U (an unary predicate),
the binary connectives ∨ (disjunction) and ∧ (conjunction), ¬ (negation), and the first-order
quantifiers ∃ (existential quantification) and ∀ (universal quantification). “First-order”
refers to the range of the quantifiers– we only allow quantification over variables, not sets
of variables. For example, let φ be the first order sentence:

(∃x)(∀y)(x ≤ y)

φ expresses the property that there is a least element. The x and y are assumed to range over
elements of the universe, or underlying set of the structure. A set of consistent sentences is
often called a theory.

Our structures have an underlying set [n] = {1, . . . , n} with the basic operations: =, ≤
and U . Without loss of generality, we will interpret the ordering ≤ as the natural ordering
on [n]. There are many choices for interpreting the unary predicate U over [n] (2n to be
precise). Let M =< [m],≤, U >, M1 =< [m1],≤, U1 >, and M2 =< [m2],≤, U2 > be
models where ≤ is a linear order on the universes of the structure, and U , U1 and U2 are
unary predicates on the universes of their respective structures. We will say M models
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ψ (written: M |= ψ) just in case the property ψ holds of M. If for every model M we
have M |= Γ implies M |= ψ, where Γ is a (possibly empty) set of sentences, then we write
Γ |= ψ (pronounced “Γ models ψ”). For the particular ψ above, M |= ψ only if there is
some element in [m] which is less than or equal to every other element in [m]. Every [m]
has a least element (namely 1), so, M |= ψ, and further, |= ψ.

While many things can be expressed using first-order sentences, many cannot. For exam-
ple, there is no first-order sentence that captures the property that a structure’s underlying
set has an even number of elements (see [5], p. 21). That is, there is no first-order sentence
φ such that for every model M =< [m],≤, U >,

M |= φ ⇐⇒ m is even

One measure of the complexity of first-order sentences is the nesting of quantifiers. If a
formula φ has no quantifiers, we say it has quantifier rank 0, and write qr(φ) = 0. For
all formulas, we define quantifier rank by induction:

• If φ = φ1 ∨ φ2 or φ = φ1 ∧ φ2, then qr(φ) = max(qr(φ1), qr(φ2)).

• If φ = ¬φ1, then qr(φ) = qr(φ1).

• If φ = ∃xφ1 or φ = ∀xφ1, then qr(φ) = qr(φ1) + 1.

Definition 1 For each t, two models M1 and M2 are equivalent (with respect to t),
M1 ≡t M2 if they have the same truth value on all first-order sentences of quantifier rank
at most t.

Let M denote the set of equivalence classes with respect to t. If M1 belongs to the class
m1 ∈M , call m1 the Ehrenfeucht value (EV) of M1.

Define M1 +M2 to be < [m1 +m2],≤, V > where

V (i) =

{
U1(i) for 1 ≤ i ≤ m1

U2(i−m1) for m1 < i ≤ m1 +m2

That is, V is the concatenation of the unary predicate on M1 and M2. We view 1, . . . ,m1

as elements of M1 and m1 + 1, . . . ,m1 +m2 as elements of M2. Under this construction,
we can view the former elements of M1 coming before those of M2 in the ordering.

For the rest of the paper, fix a number t. We will be interested in all sentences with
quantifier rank less than or equal to t. When the meaning is clear, we will write ≡ for ≡t.
It can be shown that M , the set of equivalences classes, is finite (this is not obvious). Also,
if M1 ≡t M′

1 and M2 ≡t M′
2, then M1 +M2 ≡t M′

1 +M′
2. Define m1 + m2 to be the

Ehrenfeucht value of M1 +M2.
The equivalence of structures under all first-order sentences of quantifier rank less than

or equal to t is connected to the t-pebble games of Ehrenfeucht and Fraisse, described in
[5]. Given two structures M1 and M2, M1 ≡t M2 if and only if the second player has a
winning strategy for every t-pebble Ehrenfeucht-Fraisse game played on M1 and M2. We
define the game below:
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Definition 2 The t-pebble Ehrenfeucht-Fraisse game (EF game) on M1 and M2 is
a two-person game of perfect information. For the game, we have:

• Players: There are two players:

– Player I, often called Spoiler, who tries to ruin any correspondence between the
structures.

– Player II, often called Duplicator, who tries to duplicate Spoiler’s last move.

• Equipment: We have t pairs of pebbles and the two structures M1 and M2 as game
boards.

• Moves: The players take turns moving. At the ith move, the Spoiler chooses a
structure and places his ith pebble on an element in that structure. Duplicator then
places her ith pebble on an element in the other structure.

• Winning: If after any of Duplicator’s moves, the substructures induced by the pebbles
are not isomorphic, then Spoiler wins. After both players have played t moves, if
Spoiler has not won, then Duplicator wins.

We say a player has a winning strategy for the t-pebble game on M1 and M2, if no
matter how the opponent plays, the player can always win.

These games form a powerful tool. We will use them to show that completeness of some
of our theories (see Theorem 1).

2.1.1 Order Types

For completeness, we will give a brief discussion of order types here. For more details, please
see chapter 8 of Enderton [7].

An ordinal number measures the size of a well-ordered set. For a linearly ordered set,
there is an analogous measure called order type. Two linearly ordered structures < N,≺ >
and < M, / > have the same order type if there is an isomorphism,f , between N and M
which preserves the ordering. That is, if n1, n2 ∈ N , then

n1 ≺ n2 ⇐⇒ f(n1) / f(n2).

We write ot(< N,≺ >) for the order type of < N,≺ >. Note that the order type depends
both on the underlying set and the order assigned to it.

It is traditional to use ω, η, and λ for the order types of the natural numbers, the
rationals, and the reals, respectively:

ω = ot(N, <N ) η = ot(Q, <Q) λ = ot(R, <R)

Any order type ρ can be run backwards to yield a new order ρ∗. Specifically, if ρ = ot(<
N,≺ >), then let ρ∗ = ot(< N,≺−1 >). For example, ω∗ is the order type of the negative
integers.
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We can build order types out of those we already have. First, we define addition of order
types. Informally, we would like that ρ+ σ to be “first ρ, then σ”. To write this formally,
assume ρ = ot(< N,≺ >) and σ = ot(< M, / >). Then,

ρ+ σ = ot(< (N × 0) ∪ (M × 1),≺ ⊕ / >)

where ≺ ⊕ / is defined on (N × 0) ∪ (M × 1) as

(a, i)(≺ ⊕ /)(b, j) ⇐⇒


a ≺ b if i = j = 1
a / b if i = j = 2
i < j otherwise

For example, ω∗ + ω is the order type of the set Z of integers under the natural ordering.
If < N,≺ > has order type ω∗ + ω, we will call < N,≺ > a Z-chain.

We can also multiply order types together: ρ · σ. This corresponds to the ordering of
the cross product of the underlying sets by first comparing the second coordinates, then the
first coordinates. More formally, assume ρ = ot(< N,≺ >) and σ = ot(< M, / >).

ρ · σ = ot(< (N ×M),≺ ⊗ / >)

where

(n1,m1)(≺ ⊗ /)(n2,m2) ⇐⇒
{
n1 ≺ n2 if m1 = m2

m1 / m2 otherwise

For example, let ω = ot(< N,≤N>) and 2 = ot(< {0, 1},≤2>). Then 2 · ω is the order
type for {0, 1} ×N ordered as

(0, 0) < (1, 0) < (0, 1) < (1, 1) < (0, 2) < (1, 2) < · · ·

So, 2 · ω = ω. However, ω · 2 is the order type for N × {0, 1} ordered as two consecutive
copies of the natural numbers. Thus, ω · 2 6= 2 · ω.

For any two order types ρ = ot(< N,≺ >) and σ = ot(< M, / >), we will write ρ ≤ σ
if there exists M0 ⊆M such that < N,≺ > ' < M0, / >. That is < N,≺ > is isomorphic
to some substructure of < M, / >.

2.2 Definitions from Spencer and Shelah

To achieve their results, Shelah and Spencer use techniques from Markov chain theory on
the Ehrenfeucht values of structures. In this paper, we will not address this connection
(see [8] for details). However, the suggestive names in the following definitions refer to this
correspondence.

Definition 3 We call x ∈M persistent (with respect to t) if one of the following (equiv-
alent) statements hold:

1. (∀y∃z)x+ y + z = x.
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2. (∀y∃z)z + y + x = x.

3. (∃p∃s∀y)p+ y + s = x.

If x ∈M is not persistent, then we say it is transient.

The equivalence of the clauses in the definition is not obvious and takes some proof.
Viewing this definition in terms of models, let x, y ∈ M and further assume that x is
persistent. Then, by definition of M , there exists models M and N such that x = EV (M)
and y = EV (N ). By the third clause in the definition of persistence, there exists structures
P and S such that

M≡t P +N + S.

So, any model, N , will “look like” a persistent model M if an appropriate prefix (P) and
suffix (S) are added. In terms of our ordered unary predicates, a model with a persistent
EV contains for each EV a model with that value.

We can also extend this definition to intervals of our models. The next section contains
examples of the following definitions. For each k, we will state the definition of k-persistent
and k-transient intervals. k-persistent intervals will be those that almost surely occur for
n−1/k � p(n) � n−1/(k+1), while k-transient intervals are those which almost surely do not
occur for n−1/k � p(n) � n−1/(k+1).

Fix a structure M =< [m],≤, U > and a quantifier rank t. For any i0 ∈ [m], the
1-interval of i0 is [i0, j) where j is the least j ≥ i0 with U(j). Note j could possibly be i0
itself. The 1-interval might be undefined if there is no j ≥ with U(j). Let < [i0, j),≤, U >
be the restriction of M to the interval [i0, j). What are the possible Ehrenfeucht values of
< [i0, j),≤, U >? The model begins with a sequence of 0’s (i.e. U does not hold) and ends
with a single 1 (i.e. U(j)). If the number of 0’s is great enough (s = 3t will do), then any
two such models with more than s 0’s will have the same EV. Let ai be the EV of having i
0’s, for i = 0, . . . , s and b be the EV of having more than s 0’s. Call this value the 1-value
of i0. Let E1 denote the set of all possible 1-values. Let P1 = {b} be the set of persistent
1-values. Let T1 = E1 − P1 = {a0, . . . , as} be the set of transient 1-values.

To define the k-intervals, k-values (Ek), k-persistent values (Pk), and k-transient values
(Tk), we proceed by induction. The base case of k = 1 is given above. For k + 1, assume
that k-intervals, Ek, Pk, and Tk have already been defined. Beginning at i0, let [i0, i1) be
the k-interval beginning at i0 (if it exists), and [i1, i2), [i2, i3),. . . ,[iu−1, iu) be the successive
k-intervals until reaching a k-interval [iu, iu+1) which is k-transient. Call [i0, iu+1) the
(k + 1)-interval of i0. Let x1, x2, . . . , xu, yu+1 be the successive k-values of the intervals.
Let α be the equivalence class of x1 · · ·xu in ΣPk. The (k + 1)-value of i0 is αyu+1. This
value is (k+ 1)-persistent if α is persistent in ΣPk and is (k+ 1)-transient if α is. In the
next section, we discuss several examples of these definitions.

By Theorem 3.4 of [8], if n−1/k � p(n) � n−1/(k+1), then the number of k-intervals
almost surely is greater than npk(1− o(1)) while the number of (k + 1)-intervals goes to 0
almost surely.
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3 Examples

To give some intuition about what these models and theories look like, we begin with an
informal discussion of the cases where k = 0, 1, 2. When p(n) � n−1, almost surely no 1’s
occur. To see this, let Ai be the event that U(i) holds, Xi be the random indicator variable,
and X =

∑
iXi, the total number of 1’s that occur. Then, E(Xi) = p(n), and by linearity

of expectation,
E(X) =

∑
i

E(Xi) = np(n).

As n gets large, E(X) → 0. Since Pr[X > 0] ≤ E(X), almost surely, no 1’s occur. This
gives

lim
n→∞

Pr[Un,p |= (∃x)U(x)] = 0.

The negation of this statement, (∀x)¬U(x), almost surely is true. So, (∀x)¬U(x) is in the
almost sure theory T0.

The almost sure theory also contains sentences about the ordering. Since every Un,p is
linearly ordered with a minimal and maximal element, the first-order sentences that state
these properties are in each Tk. Let Γl be the order axioms for the linear theory, that is,
the sentences:

(∀xyz)[(x ≤ y ∧ y ≤ z) → x ≤ z]
(∀xy)[(x ≤ y ∧ y ≤ x) → x = y]
(∀x)(x ≤ x)
(∀xy)(x ≤ y ∨ y ≤ x)

The following sentences guarantee that there is a minimal element and a maximal element:

µ1 : (∃x∀y)(x ≤ y)
µ2 : (∃x∀y)(x ≥ y)

Further, every element, except the maximal element, has a unique successor under the
ordering, and every element, except the minimal element, has a unique predecessor. This
can be expressed in the first-order language as:

η1 : (∀x)[(∀y)(x ≥ y) ∨ (∃y∀z)((x ≤ y ∧ x 6= z) → y ≤ z)
η2 : (∀x)[(∀y)(x ≤ y) ∨ (∃y∀z)((x ≥ y ∧ x 6= z) → y ≥ z)

We can summarize these conditions into an axiom schema. For each first order formula
α(~y, x), let

φα(~y) := (∃x)[α(~y, x) → (∃x0x1)(∀z)(α(~y, x0) ∧ α(~y, x1) ∧ α(~y, z))
→ x0 ≤ z ≤ x1)].

As n → ∞, the number of elements also goes to infinity. To capture this, we add for
each positive r the axiom:

δr : (∃x1 . . . xr)(x1 < x2 < · · · < xr)
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[000 · · ·) (· · · 000]

Figure 1: A model of T0

For n ≥ r, Un,p |= δr. Thus, for every r and k, δr ∈ Tk. Thus, for every Un,p,

Un,p |= Γl ∧ µ1 ∧ µ2 ∧ η1 ∧ η2 ∧ δ1 ∧ δ2 ∧ . . . ∧ δn

and for each k, B = {Γl, µ1, µ2, η1, η2,
∧

r δr} ⊂ Tk.
For T0, the only additional axiom we need is ∀x(¬U(x)). In the discussion in Section 4,

we will show that Γ0 = B ∪ {∀x(¬U(x))} axiomatizes T0, that is:

T0 = {σ | Γ0 |= σ}

The model of T0 with the simplest order type (ω + ω∗) is an infinite increasing chain
of zeros followed by an infinite decreasing chain of zeros (see Figure 1). Models with more
complicated order types also satisfy Γ0, namely those with arbitrarily many copies of Z-
chains of 0’s, with an infinite increasing chain of zeros at the beginning and an infinite
decreasing chain of zeros at the end. The ordering of the Z-chains is not determined. It
could be finite, infinite with discrete points, or it could be “dense.” By the latter, we mean
that between any 2 Z-chains, there’s another. In general, if M |= T0, then the order type
of M is ω + (ω∗ + ω) · κ+ ω∗ for some order type κ.

When n−1 � p(n) � n−1/2, almost surely isolated 1’s occur. Using the notation above,
we have E(X) → ∞ as n → ∞. Since all the events are independent, Var[X] ≤ E[X]. By
the Second Moment Method (see [1], chapter 4 for details),

Pr[X = 0] ≤ Var[X]

E[X]2
≤ E[X]

E[X]2
= 1

E[X] → 0

Thus, Pr[X > 0] → 1. Let Bi be the event that i and i + 1 are 1’s, let Yi be its random
indicator variable, and Y =

∑
i Yi. Then, E(Yi) = Pr[Bi] = p2 and E(Y ) = np2 → 0.

So, almost surely, 1’s occur, but no 1’s occur adjacent in the order. If, for each r > 0, we
let Ci,r be the event that i and i + r are 1’s and Cr =

∑
iCi,r, we can show, by similar

argument, that Cr → 0. This works for any fixed r, so, the 1’s that do occur are isolated
from one another by arbitrarily many 0’s. Another way of saying this is that the number of
persistent 1-intervals gets arbitrarily large as n→∞, while the number of 2-intervals goes
to 0 (this follows by Theorem 3.4 of [8]).

For models of T1, we cannot have a single infinite chain, since all the 1’s must be iso-
lated. So, we must have infinitely many Z-chains that contain a single 1. Between these
can be any number of Z-chains that contain no 1’s. Call any Z-chain that contains a 1
distinguished. For any distinguished Z-chain, except the maximal distinguished chain,
almost surely, there’s a least distinguished Z-chains above it (this follows from the discrete-
ness of the finite models). In other words, every distinguished Z-chain, except the maximal
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[00 · · ·)(· · · 00100 · · ·) (· · · 00100 · · ·)︸ ︷︷ ︸
“a Z-chain”

· · · · · · (· · · 00100 · · ·)(· · · 00100 · · ·)(· · · 00]

Figure 2: A model of T1

one, has a distinguished successor Z-chain. This rules out a “dense” ordering of the distin-
guished Z-chains and leads to a “discreteness” of 1’s, similar to the discreteness of elements
we encountered above. It says nothing about Z-chains without 1’s– those could have any
countable order type they desire. So, the model with the simplest order type is pictured in
Figure 2 and has order type ω+ (ω∗+ω) ·ω+ (ω∗+ω) ·ω∗+ω∗. More complicated models
have any countable order type of undistinguished Z-chains. So, in general, the order type
of a model of T1 is

ω + (ω∗ + ω) · κ1 + (ω∗ + ω) · κ2 + . . . . . .+ (ω∗ + ω) · λ2 + (ω∗ + ω) · λ1 + ω∗

for countable order types κ1, κ2, . . . and λ1, λ2, . . ..
By the earlier discussion, we know that the basic axioms B ⊂ T1. The only further

axioms needed are those that guarantee arbitrarily many 1’s occurring far apart and the
“discreteness” of 1’s. These axioms echo the basic axioms listed before. For each r we have:

µ′1 : (∃x)(∀y)[(U(x) ∧ U(y)) → (x ≤ y)]
µ′2 : (∃x)(∀y)[(U(x) ∧ U(y)) → (x ≥ y)]
δ′r : (∃x1 . . . xr)(x1 < x2 < · · · < xr ∧ U(x1) ∧ · · · ∧ U(xr))
εr : (∀x1, x2)[(U(x1) ∧ U(x2) ∧ x1 < x2) →

(∃y1, . . . , yr)(U(y1) ∧ . . . ∧ U(yr) ∧ x1 < y1 < · · · < yr < x2)

These axioms, along with B, axiomatize T1 (this is shown in Theorem 1).
When n−1/2 � p(n) � n−1/3, almost surely isolated 1’s occur, as well as more com-

plicated occurrences of 1’s. The more complicated occurrences, which we will refer to as
level 2 occurrences, are 11, 101, 1001, . . . , 10r1 . . ., where “10r1” is an interval [i, i + r + 1]
with U(i), U(i + r + 1), and for each 1 < j < i + r + 1, ¬U(j). Using the notation from
above, note E(Y ) = np2 →∞ and Pr[Y > 0] → 1. By similar argument, we can also show
that three 1’s cannot occur “close” together. Again, the distinguished Z-chains (i.e. those
that contain at least one 1) in a model of T2 cannot be dense. The argument above can be
extended to give that for every r, s > 0, almost surely for any occurrence of 10r1, except
the maximal one, there exists a least occurrence of 10s1 above it. In between any two level
2 occurrences, we have arbitrarily many isolated 1’s. These can’t be densely ordered since
almost surely every 1 has a successor. So, these sequences cannot be densely ordered either.
That leaves only the Z-chains without 1’s. Since we have no way to say things about them,
they can have any countable order type they wish. Further, every finite sequence of level 2
occurrences must occur. This intriguing property also occurs at higher levels.

Since T2 |= B, any model of T2 begins with an ascending chain of 0’s. In fact, each model
will begin with a model of T1, followed by a level 2 occurrence. Which level 2 occurrence
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[00 · · ·)(· · · 0001000 · · ·) · · ·

...
(· · · 0001000 · · ·)
(· · · 0001000 · · ·)
(· · · 00107100 · · ·)
(· · · 0001000 · · ·)
(· · · 0001000 · · ·)

...︸ ︷︷ ︸
“a page”

...
(· · · 0001000 · · ·)
(· · · 0001000 · · ·)
(· · · 00103100 · · ·)
(· · · 0001000 · · ·)
(· · · 0001000 · · ·)

...

Figure 3: An initial segment of a model of T2

occurs first is not fixed. For example, Figure 3 shows an initial segment of a model of T2

where the first level 2 occurrence is 1071 and the second is 1031.
Let a line be a Z-chain with at least one element 1. Call a set that is made of lines

and has order type (ω∗+ω) · (ω∗+ω) a page. Similarly, we can view sequence of infinitely
decreasing and increasing pages with the property that every finite sequence of pages occurs
as a book. While pages are the basic building blocks of models of T2, books will be
the building blocks for models of T3. Each book is built around a distinguished level 3
occurrence. This analogy continues to volumes, libraries, etc.

4 Axioms

In Section 2, we gave the definitions of persistent and transient k-intervals. We begin this
section by defining these k-intervals in the first-order language. We then give the axioms
explicitly for T0 and T1. For higher k, we build the axioms inductively from lower k.

Defining k-intervals in the First Order Language

We will define predicates for the persistent k-intervals, Pk,t, and the transient k-intervals,
Tk,t, for a fixed k, t positive integers. To do this, we first need to express the k-interval of
i in first order logic. We begin by showing that the right side of an k-interval is first order
definable. From this, we can define for every x the k-interval that contains x. Once this is
done, we can define Pk,t and Tk,t.

Let endk(i) denote the value so that [i, endk(i)) is the k-interval of i, and let Ik(i) denote
that interval. For 1 ≤ s ≤ k we have a partitioning of Ik(i) into s-intervals, let Xs be the
set of end points of those intervals. So X1 is the positions where there is a one, and Xk is
just endk(i)− 1. Xs+1 is those values in Xs which are endpoints of transient s-intervals in
the decomposition into s-intervals.

Let Ys be the set of all endpoints of persistent s-intervals [x, ends(x)) where i ≤ x <
ends(x) < endk(i).
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Lemma 1 Ys ⊂ Xs.

Proof: This is clear for s = 1 since all 1-intervals must end in a one. Assume it true
for s, and let [x, ends+1(x)) be a persistent s + 1-interval. Then ends(x) < ends+1(x) and
[x, ends(x)) is a persistent s-interval. By induction, ends(x) − 1 ∈ Xs. To find ends+1(x)
we keep taking consecutive s-intervals beginning at [x, ends(x)) until we get a transient
one. After the first one (which is persistent) we are getting precisely the intervals in the
partitioning of Ik(i) into s-intervals, and ends+1(x) is the end of the first transient one,
which will also be in Xs+1. a

On Ik+1(i) define w to be a rightside if there exists v, i ≤ v < w, with [v, w) a persistent
k-interval.

Lemma 2 The predicate rightside, RSk,t, is first-order definable.

Proof: By induction on k.
For k = 1 and each t, a persistent 1-interval consists of more that 3t 0’s followed by a

1. Using this, we define

RS1,t(i, w) ⇐⇒ i < w ∧ (∃v)(i ≤ v < w ∧ v + 3t ≤ w
∧(∀z)(v ≤ z < w ∧ ¬U(z)) ∧ U(w))

which is a first-order definition of rightside with respect to t and i.
By inductive hypothesis, the predicate that w is a rightside, RSk,t(w), is defined on

Ik+1(i). To say that [w′, w) is one of the constituent k-intervals is defined by saying
they are consecutive rightsides. For any x ∈ Ik+1(i), we define frontk,t(x), backk,t(x)
as the rightsides just less than and just greater than x. This gives that the interval
Jx = [frontk,t(x), backk,t(x)) is first order defined.

We can now define the persistent and transient intervals. For each k and t, we have a
finite set of Pk of types of k-intervals. To define RSk+1,t we need to capture what is persistent
in ΣPk, the set of all finite words of Pk. We split ΣPk into Ehrenfeucht equivalence classes
by means of first-order sentences with predicates α(x) for each α ∈ ΣPk. We replace
α(x) by the inductively defined predicate “Jx has type α” and we replace “x < y” by
backk,t(x) ≤ frontk,t(y). From this, the equivalence class on ΣPk has been defined in our
language. We define RSk+1,t(i, w) to be true iff there is a i ≤ v < w such that [v, w) is
a persistent k-interval. Since this can be expressed in a first order way, so can RSk+1,t,
Pk+1,t, and Tk+1,t. a

Let I be a k-interval and let v be the EV of I under t moves. Then, define Ek,t to be the
set of all such EV. Ek,t is finite, and for each α ∈ Ek,t, there exists a first-order sentence φα

with quantifier rank at most t such that I has EV α if and only if I |= φα.

Axioms

Using Theorem 3.4 of [8], we have the expected number of k-intervals is large for n−1/k �
p(n) � n−1/(k+1), while the expected number of k + 1-intervals goes to 0. So, we need as
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an axiom schema for s ≤ k: “there are arbitrarily many s-intervals.” We also need axioms
that guarantee no t-intervals exist for t ≥ k and discreteness and endpoints axioms for each
s-interval for s ≤ k. As discussed in Section 3, each Tk contains the basic axioms B (which
included axioms for linear order, discreteness, and the existence of minimal and maximal
elements).

The axiomatization for k = 0 is straightforward. Let

Γ0 = B ∪ {(∀x)¬U(x)}

From the discussion in Section 3, it follows that Γ0 ⊆ T0. Further, Γ0 is complete– that is,
for every sentence φ, Γ0 |= φ or Γ0 |= ¬φ (where Γ |= φ means for every model M, M |= Γ
implies M |= φ). By the Los-Vaught Test, showing completeness reduces to showing Γ0

has no finite models and that every countable model satisfies the same first-order sentences.
The schema δr gives that there are no finite models and standard back-and-forth arguments
give that the models satisfy the same sentences (see [2] for details). Since Γ0 is complete
and contained in T0, T0 = {σ | Γ0 |= σ}. Thus, Γ0 gives an axiomatization for T0.

To build inductively the axioms for larger k, we need axioms to express that an interval
“models” T0. For this, we need only a simple modification to the axioms we have thus far.
For intervals (i, j), we have:

δr(i, j) : (∃x1 . . . xr)(i < x1 < x2 < · · · < xr < j)
ζ(i, j) : (∀x)[i < x < j → ¬U(x)]

Let σ0,r(i, j) = δr(i, j) ∧ ζ(i, j). So σ0,r(i, j) says that the interval (i, j) has at least r
elements and all elements in the interval are 0.

For T1, we begin with axioms for intervals (i, j). Let

σ1,m(i, j) = B ∧ (∀x)(i < x < j ∧ σ0,m(front(x),back(x)))
∧(∃j1 . . . jm)(i < j1 < . . . < jr < j ∧ σ0,m(i, j1) ∧ U(j1)
∧σ0,m(j1 + 1, j2) ∧ U(j2) ∧ . . . ∧ σ0,m(jr−1 + 1, jr) ∧ U(jr))
∧(∃j1 . . . jm)(i < j1 < . . . < jr < j ∧ σ0,m(j1, j2) ∧ U(j2)
∧σ0,m(j2 + 1, j3) ∧ U(j3) ∧ . . . ∧ σ0,m(jr + 1, j) ∧ U(j))

So, σ1,m(i, j) says that the interval (i, j) has all the basic properties and at least m 0-
intervals separated by 1’s, counting forward from i, and at least m 0-intervals separated by
1’s, counting backwards from j. Further, for every x ∈ (i, j), (front(x),back(x)) is required
to be a 0-interval. Recall that we have fixed t, and have been interested in all sentences
with quantifier rank ≤ t. Let

Γ1,t =
⋃
m

{(∃ik∀j)[i ≤ j ≤ k ∧ σ1,m(i, k)]}.

and Γ1 =
⋃

t Γ1,t. So, Γ1 requires that the interval beginning with the minimal element and
ending the maximal element is a 1-interval. By earlier discussions, Γ1 ⊆ T1. Further, by
the Zero-One law of [4], T1 is complete. So, for every φ, either φ ∈ T1 or ¬φ ∈ T1. We claim
Γ1 is also complete and thus axiomatizes T1:
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Theorem 1 Γ1 is a complete theory for T1.

Proof: Note that Γ1 ⊂ T1, so it suffices to show that Γ1 is complete. We will show
this by giving a winning strategy for Duplicator for the r-move game on two models, M1

and M2, of B ∪ {σi}. The essence of the proof is that in our theories the ones are spaced
arbitrarily far apart. Since r pebbles can only tell distances of length ≤ 2r, we define the
r-type of an interval to keep track of small distances from ones.

Let the r-type of an interval [a, b] to be (L,R,O,Z), with O the number of ones in the
interval; Z the number of zeros in the interval; L the minimal nonnegative number with
a + L a one; R the minimal nonnegative number with b − R a one – but if any of these
numbers are not in the set {0, 1, . . . , 2r} call them by a special symbol MANYr. (That is,
if the first 2r + 1 symbols of the interval are zeroes then L = MANYr).

The strategy for Duplicator with r moves remaining and x1 < . . . < xs the moves
already made on model M1; x′1 < . . . < x′s the moves already made on model M2 is
to ensure that for all i intervals [xi, xi+1], [x′i, x

′
i+1] have the same r-type. To include

the end intervals, assume Spoiler starts by playing the minimal and maximal elements of
M to which Duplicator of course follows on M ′. Both M1 and M2 model σi, each has
the same number of ones occurring, the r-type of the initial moves are the same, namely
(MANYr,MANYr,MANYr,MANYr) for i sufficiently large (i > 3r suffices).

We show that if [a, b], [a′, b′] have the same r-type then for all x ∈ [a, b] (Spoiler move)
there exists x′ ∈ [a′, b′] (Duplicator move) with [a, x], [a′, x′] having the same (r − 1)-type
and [x, b], [x′, b′] also having the same (r − 1)-type (similarly for every x′ ∈ [a′, b′]). We
proceed by induction on r, the number of moves remaining. If r = 1, then if U(x), then we
must have O > 0. So, there must be a x′ ∈ [a′, b′] such that U(x′). If ¬U(x), then Z > 0
and there must be a x′ ∈ [a′, b′] such that ¬U(x′). Thus, Duplicator has a winning strategy
for the game on intervals with the same 1-type and with 1 move remaining.

For r > 1, assume that [a, b] and [a′, b′] have the same r-type: (L,R,O,Z). Let
(Ll, Rl, Ol, Zl) be the (r − 1)-type of [a, x] and (Lr, Rr, Or, Zr) be the (r − 1)-type of [x, b].
If Z 6= MANYr, then the lengths of the intervals [a, b] and [a′, b′] are equal and ≤ 2r. In
this case, the r-type fully determines the occurrence and placement of any one in the in-
terval (if one occurs). Let x′ = a′ + x − a. If O = 0, then L = R = 0, and both intervals
are all zeros. If O = 1 (the only other possibility since Z 6= MANYr and the ones occur
arbitrarily far apart), then the one occurs the exact same distance from x and x′. So, the
resulting intervals [a, x] and [a′, x′], and [x, b] and [x′, b′] have the same r-types, and thus,
(r − 1)-types.

So, assume Z = MANYr, that is, the lengths of the intervals [a, b] and [a′, b′] are at
least 2r but may not be equal. If x− a < 2r−1, let x′ = a′ + x− a. By construction, [a, x]
and [a′, x′] have the same length and the same number of ones. If the number of ones is
zero, then Ll = Rl = Ol = 0 and Zl = x − a for both intervals. If the number of ones is
one (the only other possibility), then Ll = L, Rl = MANYr−1, Ol = 1, Zl = x − a − 1 for
both [a, x] and [a′, x′]. Since x − a < 2r−1, we have b − x > 2r−1 and Zr = MANYr−1. If
Ol = 0, then the number of ones in [x, b] and [x′, b′] is the same as the number of ones in the
original intervals (i.e. O). If the number of ones is greater than 2r−1, then Or = MANYr−1.
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Otherwise, Or = O. If Ol = 1, then the number of ones in [x, b] and [x′, b′] is one less than
that in the original intervals. So, Or = MANYr−1 if O − 1 > 2r−1, otherwise, Or = O − 1.
Thus, [a, x] and [a′, x′], and [x, b] and [x′, b′] have the same r-types, and thus, (r− 1)-types.
If b− x < 2r−1 follows by a similar argument.

So, assume a+ 2r−1 ≤ x ≤ b+ 2r−1. This gives that the length of both the leftside and
rightside intervals is at least 2r−1. Let −2r−1 < y < 2r−1 be such that U(x + y) if such a
y exists. Let x′ be such that U(x′ + y) and if x + y is the ith one counting from the left
for i ≤ 2r−1, then x′ + y is also the ith one counting from the left (such exists since both
[a, x] and [a′, x′] have the same value for O). Similarly, if x + y is the ith one counting
from the right for i ≤ 2r−1, then x′ + y is also the ith one counting from the right. If
neither of these hold, choose x′ such that x′ + y is the ith one for i > 2r. By construction,
the resulting intervals will have the same values for Ll, Lr, Rl, Rr, Ol, Or. The values for
Zl = Zr = MANYr. So, [a, x] and [a′, x′], and [x, b] and [x′, b′] have the same r-types, and
thus, (r − 1)-types.

Lastly, assume a+ 2r−1 ≤ x ≤ b+ 2r−1 but no y such that U(x+ y) and −2r−1 < y <
2r−1 exists. Then x is at least 2r−1 from a, b, and every n such that U(n). This gives
Lr = Rl = Zl = Zr = MANYr−1. As before, the values of Ll and Rr depend on L and
R (since they count the distance from endpoints that did not move). So, we only need
for our choice of x′ that it is at least 2r−1 from any occurrence of one and has the same
value for Ol and Or that [a, x] and [x, b] does. If Ol < 2r−1, choose x′ so that it occurs at
least 2r−1 above the Olth one. If Or < 2r−1, then [x′, b] also has the same number of ones
since O = Ol + Or is the value for both [a, b] and [a′, b′]. If Or = MANYr−1, then, again
[x′, b] also has the value Or = MANYr−1. Similar argument works for Or < 2r−1. If both
Ol = Or = MANYr−1, then choose x′ so that it occurs at least 2r−1 above the 2r−1th one
(such an x′ exists, since O = MANYr). So, [a, x] and [a′, x′], and [x, b] and [x′, b′] have the
same r-types, and thus, (r − 1)-types.

Thus, [a, x] and [a′, x′] have the same (r − 1)-types, as well as [x, b] and [x′, b′]. By
inductive hypothesis, Duplicator can win the (r−1)-move game played on [a, x] and [a′, x′],
and on [x, b] and [x′, b′]. Duplicator can win the r-move game on [a, b] and [a′, b′] by placing
x′ (x) according to the above strategy, and then following the strategy given by inductive
hypothesis for the remaining r − 1 moves. a

For the case of k > 1, we go by induction on the earlier cases. To do this, we need to be
able to distinguish different persistent k-intervals. This was not an issue for T1 since it had
only one type of persistent interval. However, we can extend our definition Pk,t to Pk,t,α

where Pk,t,α(i, j) holds iff (i, j) is a k-interval of type α.
Our axioms for k > 1 on an interval (i, j) are σk,m(i, j), where each σk,m(i, j) consists

of:

• the basic axioms, B,

• there is at least m level k-occurrences at the beginning of the model and at the end,

• every sequence of level k-occurrences of length less than m occurs,
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• the interval between any two level k-occurrences contains m level k − 1 intervals,

• there is a least and greatest level k-occurrence of each type,

• and level k-occurrences occur discretely.

Each of these statements can be written in first order logic.
Then

Γk =
⋃
m

{(∃il∀j)[i ≤ j ≤ l ∧ σ1,m(i, l)]}.

5 Size of Models

For each k, we build inductively a model, Mk of Tk. Mk is a model of Tk with least order
type. For k = 0 and k = 1, Mk is unique. For larger k, Mk is one of infinitely many
models with least order type (see Theorem 3). Before defining the models, we define the
sets of all k occurrences and finite sequences of k occurrences. These are then used in the
construction of Mk.

Definition 4 For each k > 0, let Sk = {sk1, sk2, . . .} be an enumeration of all k occur-
rences. Let Lk = {lk1, lk2, . . .} be an infinite, ordered list of elements of Sk with the property
that every finite sequence of elements of Sk occurs as subsequence of Lk.

For k = 1, there is only one 1-occurrence, namely 1. So, S1 = {1} and L1 = {1, 1, 1, . . .}.
The two occurrences are 11, 101, 1001, 10001, . . .. So, S2 = {11, 101, 1001, 10001, . . .} and
L2 contains all finite sequences of elements of S2. Note that L2 is not uniquely determined.
Indeed, for k ≥ 2, there are uncountably many choices for Lk, each leading to a different
model of Tk.

Definition 5 For a given k-occurrence o, let |o| be the length of o and (o)i be the ith
element of o for 1 ≤ i ≤ |o|.

Definition 6 Let M0 = (ω × 0) ∪ (ω × 1) and M0 =< M0, U,≤0> where for every U is a
unary predicate that is constantly false, and ≤0 is a binary relation that satisfies the linear
ordering axioms and for every (m, i), (n, j) ∈M0:

(m, i) ≤0 (n, j) ⇐⇒


m ≤ n if i = j = 0
m ≥ n if i = j = 1
i < j otherwise

Let Mk+1 = (Mk×ω× 0)∪ (Mk×ω× 1) and define ≤k+1 as a binary relation that satisfies
the linear ordering axioms and for every (m, i1, i2), (n, j1, j2) ∈Mk+1

(m, i1, i2) ≤k+1 (n, j1, j2) ⇐⇒


m ≤k n if i1 = j1 and i2 = j2
i1 ≤ j1 if i1 6= j1 and i2 = j2 = 0
i1 ≥ j1 if i1 6= j1 and i2 = j2 = 1
i2 < j2 otherwise
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Let mink and maxk be the least and greatest elements in Mk. For each i ∈ ω, let

[(maxk, i, 0), (maxk, |lk+1,i|, 0)]

be the lk+1,i occurrence. That is, for 0 ≤ j ≤ |lk+1,i|,

Uk+1((maxk + j, i, 0)) ⇐⇒ (lk+1,i)j is 1.

Similarly, let [(mink, i, 1)), (mink, |lk+1,i|, 1)] be the lk+1,i occurrence. For every element in
the structure, Uk+1 agrees with the unary predicate of Mk, that is, if Uk+1((m, i, 0)) is not
specified above, let Uk+1((m, i, 0)) = Uk(m).

Lemma 3 For each k, the order type of Mk is

ot(Mk) = ω + (ω∗ + ω) · ω + . . .+ (ω∗ + ω)k · ω
+(ω∗ + ω)k · ω∗ + . . .+ ω∗(ω∗ + ω) · ω∗ + ω∗

Proof: By induction on k.
For k = 0, this follows by the definition of M0.
Assume Mk has the proper form and to show this for Mk+1. By construction,

ot(Mk+1) = ot(Mk) · ω + ot(Mk) · ω∗.

By inductive hypothesis,

ot(Mk) = ω + (ω∗ + ω) · ω + . . .+ (ω∗ + ω)k · ω + (ω∗ + ω)k · ω∗ + . . .+ (ω∗ + ω) · ω∗ + ω∗.

So,
ω · ot(Mk) = ω · [ω + (ω∗ + ω) · ω + . . .+ (ω∗ + ω)k · ω

+(ω∗ + ω)k · ω∗ + . . .+ (ω∗ + ω) · ω∗ + ω∗]

By induction on k (and the fact that for any order type κ, κ · ω = κ+ κ · ω), we can show
that ot(Mk) · ω is equivalent to:

ω + (ω∗ + ω) · ω + . . .+ (ω∗ + ω)k · ω + (ω∗ + ω)k+1 · ω

This gives the first half of the order type. By similar argument, we have

ω∗ · ot(Mk) = (ω∗ + ω)k+1 · ω∗ + (ω∗ + ω)k · ω∗ + . . .+ (ω∗ + ω) · ω∗ + ω∗

Thus, the order type of Mk+1 has the desired form. a

Lemma 4 If M |= T0, then ot(M) = ω + κ+ ω∗ for some order type κ.
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Proof: Assume M |= Σ0. So, M contains a minimal and a maximal element and is discrete.
Further, every element except the greatest has a successor, and every element except the
least has a predecessor. This gives that every initial segment of the natural numbers is an
initial segment of M, and every final segment of the negative integers is included as a final
segment of M. Thus, ot(M) = ω + κ+ ω∗. a

Lemma 5 For every k, Γk is an axiom set for Tk.

Proof: We have discussed the cases for k = 0 and k = 1 already. For larger k, it suffices
to show that for every model M,

M |= Γk ⇐⇒ M |= Tk.

Since Γk ⊆ Tk, M |= Tk implies M |= Γk. So, we need to show that M |= Γk implies
M |= Tk. Let σ ∈ Tk and t = qr(σ). By definition,

lim
n→∞

Pr[Un,p |= σ] = 1

for n−1/k � p(n) � n−1/(k+1). Since σ holds almost surely, it holds for every M with
persistent EV. By construction, Γk captures all models with persistent EV. So, M |= Γk

if and only if M is persistent. Every model of Γk is also a model of σ. Therefore, M |=
Γk ⇐⇒ M |= Tk. and Γk is an axiom set for Tk. a

Theorem 2 For every k, Mk |= Tk.

Proof: By Lemma 5, it suffices to show Mk |= Γk. We have shown the case for k = 0 in
Section 3. So, we have, by construction, M0 |= T0.

Assume we have Mk |= Γk, and show Mk+1 |= Γk+1. By inductive hypothesis,

Mk |= Γk =
⋃
m

{(∃il∀j)[i ≤ j ≤ l ∧ σ1,m(i, l)]}.

By construction, Mk+1 is an infinitely increasing sequence of Mk, followed by an infinitely
decreasing sequence of Mk. Since Mk |= B, we have the discreteness and basic axioms
hold. Since Lk+1 is built into each Mk+1, we also have that every finite sequence of level
k + 1 occurrences occur. Thus, Mk+1 has all the properties of Γk+1, and Mk+1 |= Tk+1. a

Theorem 3 For each k, if M |= TK , then

ot(M) ≥ ot(Mk)
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Proof: By induction on k. We have shown this already for k = 0 and k = 1 in Section 3.
For larger k: assume M |= Tk. By Lemma 5, M |= Γk. So, M contains every finite

sequence of k-intervals, separated by arbitrarily many (k − 1)-intervals. Further, M has
countably many k-intervals at the beginning and at the end of the model. By inductive
hypothesis, each k− 1-interval has order type greater than or equal to that of Mk−1. Since
M must contain countably many such intervals at the beginning and end of the model,

ot(M) ≥ ot(Mk−1) · ω + ot(Mk−1) · ω∗

This is exactly the order type of Mk calculated in Lemma 3. Thus, ot(M) ≥ ot(Mk). a
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