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Abstract

We present the results of a large-scale experimental study of quartet-based methods
cleaning and puzzling) for phylogeny reconstruction. Our experiments include a broad ra
problem sizes and evolutionary rates, and were carefully designed to yield statistically robust
despite the size of the sample space. We measure outcomes in terms of numbers of edges o
tree correctly inferred by each method (true positives). Our results indicate that these quarte
methods are much less accurate than the simple and efficient method of neighbor-joining, part
for data composed of short to medium length sequences. We support our experimental find
theoretical results that suggest that quartet-cleaning methods are unlikely to yield accurate tre
less than exponentially long sequences. We suggest that a proposed reconstruction metho
first be compared to the neighbor-joining method and further studied only if it offers a demons
practical advantage.
 2003 Published by Elsevier Science (USA).
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1. Introduction

Reconstructing the evolutionary history of a group of taxa is a major research
in computational biology. An evolutionary history not only gives relationships am
taxa, but also an important tool for determining structural, physiological, and bioche
properties [5,30]. Research on tree reconstruction has focused on reconstructin
evolutionary tree (phylogeny) under various optimization criteria. However, almo
optimization problems of interest to biologists are NP-hard (see [11] for a review), so
most biologists use heuristic methods or surrogate optimization criteria.

A popular family of phylogenetic heuristics is based onquartets. A quartet is an
unrooted binary tree for a quadruple of taxa. For most optimization problems, it is po
to determine the optimal tree on a set of four leaves by analyzing all three possible
Quartet-based methods compute a quartet under an optimization criterion for each
four taxa and then combine the quartets to yield a tree on the full set of taxa. Becaus
are Θ(n4) quartets, many quartet-based methods run inΩ(n5) time, which is currently
impractical for a hundred or more taxa.

How accurate are quartet-based methods? In biological applications, the true, his
tree cannot be ascertained exactly, which makes assessing the quality of recons
methods problematic (one exception is laboratory-created phylogenies for viruse
some bacteria, as illustrated in the study by Hillis et al. [10]). As a consequence, th
method of choice for evaluating heuristics has been simulation [9]. In such a simulation, an
ancestral biomolecular (DNA, RNA, or amino-acid) sequence is evolved along a “m
tree,” producing a synthetic set of biomolecular sequences at the leaves. Phylo
reconstruction methods are then assessed based upon how accurately they rec
the model tree (the “true” tree). Biologists typically evaluate performance accordi
the topological accuracy of the reconstructed unrooted tree, because the tree topo
interpreted as the order of past evolutionary events, that is, it yields the relationships
species, genes, or other taxa. (The reconstructed tree is typically unrooted, as dete
a root is a very difficult problem of its own.) Topological accuracy is typically meas
by the true positives, i.e., the percentage of edges of the true tree found in the recons
tree.

Among the distance-based methods (methods that transform input sequences
distance matrix and then construct the tree from that distance matrix), none is more
used by biologists than theneighbor-joining (NJ) method [27]. Not only is it quite fast
(O(n3) for n taxa [29]), but experimental work has also shown that the trees NJ const
are reasonably accurate, as long as the rate of evolution is neither too low nor too
However, there is no comparative study of NJ and quartet-based methods.

We present the results of a detailed, large-scale experimental study of quartet
methods and NJ under the Jukes–Cantor model of evolution [16]. Our results indicate tha
under this model, NJ always outperforms the quartet-based methods we examined, i
of both accuracy and speed. We suggest that NJ, already the most popular distanc
method, should be used as a minimum standard in the assessment of phylogenetic m
a proposed method should be compared with NJ and shown to be at least com
in performance to NJ before it is studied in depth. We also present new theory
convergence rates of quartet-based methods which helps explain our observations.
U
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2. Terminology and review

2.1. Simulations and the Jukes–Cantor model

A model tree for sequence evolution is a pair,(T , {λe}), whereT is a rooted unlabele
tree and, for each edgee of T , λe is the expectation of a Poisson distribution describing
number of changes at each site in the sequence along edgee. TheJukes–Cantor model [16]
is the simplest Markov model of biomolecular sequence evolution. In that model, a
sequence (a string over the set of the four nucleotides:{A, C, T , G}) at the root evolves
down a rooted binary tree. The sites (i.e., the positions within the sequences)
independently and identically, with equal probabilities of transition from one nucle
to any other. A Jukes–Cantor model tree is a model tree in which the site change
place according to the Jukes–Cantor model.

2.2. Measures of accuracy

Let T be the true tree (that used in the model tree) and letT ′ be a tree produced b
a reconstruction method, with bothT andT ′ leaf-labeled by a setS of taxa. The edge
of T ′ are often called thereconstructed edges since the method is trying to reconstruct t
original tree. The true and inferred trees are compared only with respect to their unde
unrooted versions, in part because the reconstructed tree is typically unrooted and
because the topological structure of a tree does not depend on the location of it
therefore, in the remainder of this discussion, all trees are assumed to be unrooted.

For each edgee ∈ E(T ), we define the bipartitionπe induced onS by the deletion of
the edgee from T . The bipartitionπe can also be written as thesplit, {A|B}, whereA

consists of all the leaves (that is, elements ofS) on one side of the bipartition and whe
B is justS − A. (These definitions apply to any tree on the setS of leaves.) Methods fo
reconstructing trees are evaluated according to the degree of topological accuracy ob
by comparing the sets of splits or bipartitions of the two trees. Thetrue positives are
the edgese ∈ E(T ) whose split also occurs in the splits ofT ′. Figure 1 illustrates this
concept (note that the trees are drawn as rooted, but are compared only with res
their unrooted versions).

2.3. Statistical performance issues

Under the Jukes–Cantor model, a methodM is statistically consistent if, for every
model tree(T , {λe}) and everyε > 0, there is a sequence lengthk (which may depend
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Fig. 1. True positives: The true tree is on the left. In the tree on the right, the true positives (with respec
tree on the left) are indicated by solid lines. The other edge of the tree is indicated by dotted lines.
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on M, T , {λe}, andε) such thatM recovers the unrooted version ofT with probability at
least 1− ε, when the method is given sequences (generated under the Jukes–Canto
on (T {λe})) of length at leastk.

The sequence length required by a method is a significant aspect of its perform
because real data sets are of limited length (typically bounded by a few hundre
few thousand nucleotides). Computational requirements are also important, but it m
possible to wait longer or use more powerful machines, whereas it is not possible
longer sequences than exist in nature. Consequently, experimental and analytical
have attempted to bound the sequence lengths required by different phylogenetic m
The rate at which a method converges to 100% accuracy as a function of the se
length is called theconvergence rate.

2.4. Neighbor-joining

Neighbor-Joining (NJ) was formally described in 1987 [27] and has been a mainstay
phylogeny reconstruction among biologists ever since. NJ is a cubic-time distance
algorithm that begins by creating a node for every taxa in the input set and mak
list of those nodes. It proceeds by repeatedly pairing the two “closest” nodes fro
list, adding a new node (“the parent”) with edges to the selected pair, and rep
that pair with a new node. As this process progresses, the list of nodes available
shrinks and an acyclic graph is formed by the edges added with the new nodes
process continues until the list of nodes is empty and a tree on all the nodes ha
created. As with all distance-based phylogenetic reconstruction methods, the inpu
is a dissimilarity matrix{dij }, where in practicedij is corrected, according to assumptio
about the stochastic model of evolution underlying the data, in order to account for m
hits. Even with this correction, however, it does not necessarily follow that two leai
andj are siblings ifdij is the minimum value (even ifd is a tree metric). Therefore, N
computes a secondary dissimilarity matrix{sij }, for which it does follow thati andj are
siblings if sij is minimized andd is a tree metric. At each step, then, NJ chooses the
of leaves with the smallestsij distance. NJ eventually returns a binary (i.e., fully resolv
tree and is statistically consistent for the Jukes–Cantor model of evolution, and fo
model for which statistically consistent distance corrections exist. (See [6, Section 7.3],
for a very readable discussion of NJ, and a sketch of Atteson’s proof [1] of its statistical
consistency.)

2.5. Quartet-based methods

A quartet is an unrooted binary tree on four taxa. A quartet induces a unique bipar
of the four taxa and can be denoted by that bipartition. If the taxa are{a, b, c, d} ⊆ S, we
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Fig. 2. The three possible quartets on four taxa{a,b, c, d} and their bipartitions.
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quartet{ab|cd} is correct

quartet{ae|bc} is an error

Fig. 3. For this model tree, the quartet{ab|cd} agrees with the tree, while the quartet{ae|bc} is an error with
respect to the tree.

can use{ab|cd} to denote the quartet that pairsa with b andc with d (see Fig. 2). A quarte
{ab|cd} agrees with a treeT if all four of its taxa are leaves ofT and the path froma to
b in T does not intersect the path fromc to d in T . Equivalently,{ab|cd} agrees with a
tree if the homeomorphic subtree induced inT by the four taxa is the quartet itself. Th
quartet{ab|cd} is an error with respect to the treeT if it does not agree withT . Figure 3
illustrates this idea. LetQ(T ) = {{ab|cd} | a, b, c, d ∈ S and{ab|cd} agrees withT }. If
Q(T ) denotes the set of all quartets that agree withT , thenT is uniquely characterized b
Q(T ) and can be reconstructed fromT in polynomial time [7].

Quartet-based methods operate in two phases. In the first phase, they constru
Q of quartets on the different sets of four taxa. A popular approach is to use max
likelihood (ML), a computationally intensive but statistically sophisticated method [8,22].
In the second phase, they combine these quartets into a tree on the entire set of
practice, not all quartets are accurately inferred, so it is necessary for quartet m
to handle incorrect quartets. Most optimization problems related to tree reconstr
from quartets are NP-hard. An example of this is theMaximum Quartet Compatibility
problem [15], which seeks a treeT for a given setQ of quartets such that|Q(T ′) ∩ Q| is
maximized.

The methods studied in this paper have no performance guarantees with respec
Maximum Quartet Compatibility problem, although each of them is statistically consis
under the Jukes–Cantor model of evolution. However, with the exception of Qu
Puzzling, all quartet methods we examine do provide guarantees about the edge
true tree that they reconstruct. These guarantees are expressed in terms ofquartet errors
around an edge, a concept we now define.

Consider an edgee in the true treeT ; its removal defines the split{A|B} on the elements
of S. Consider those sets of four leaves{a, a′, b, b′} with {a, a′} ⊆ A and{b, b′} ⊆ B. Let
t be a quartet on the leaves{a, a′, b, b′}. Note that there are three such possibilities fot :
{aa′|bb′} (which agrees with the treeT ) and two others:{ab′|a′b} and {ab|a′b′}. The
quartett is said to be anerror around e if t is not {aa′|bb′} (i.e., if t does not agree with
the treeT ); see Fig. 4. Similarly, ifT ′ is a proposed tree, andQ is a set of quartets, the
t ∈ Q is an error around edgee ∈ E(T ′) if t = {ab|a′b′} or t = {ab′|a′b}, whereπe is the
bipartition{A|B}.

Two of the methods we study, theQ∗ method (also known as the Buneman meth
and the Quartet Cleaning methods, can be described in terms of an explicit bou
the number of quartet errors around the edges they reconstruct. We begin with tQ∗
method [3]. This method seeks themaximally resolved treeT ′ obeyingQ(T ′) ⊆ Q. For
example, Fig. 5 contains a list of five quartets,Q. The only bipartition compatible with a
U
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Fig. 4. The quartet{ce|df } is in error around each of the dotted edges in the tree.

{ab|cd}
{ab|ce}
{ab|de}
{ae|cd}
{bc|de}
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��

a b

c d e

Fig. 5. Maximally resolved treeT ′ (right) of a given set of quartets (left).

quartets is{ab|cde}, so that the maximally resolved tree for these quartets,T ′, contains
only a single nontrivial edge. The set of quartets induced byT ′, Q(T ′), is a proper subse
of the input set of quartets,Q:

Q(T ′) = {{ab|cd}, {ab|ce}, {ab|de}}⊂ Q.

Thus, by definition, there areno quartet errors around any edge in the treeT ′ with
respect to the input set of quartetsQ. This tree always exists, since the star tree1 trivially
satisfies the constraint on any set of quartets. TheQ∗ tree is unique and can be construc
in polynomial time. By design, however, theQ∗ method is conservative and genera
produces very unresolved trees [13].

Quartet-Cleaning (QC) methods [2,4,15] have explicit bounds on the number of quar
errors around each reconstructed edgee. As with theQ∗ method, we start with an inpu
set of quartetsQ. For each edgee in the true treeT , let qe be the number of quartets th
crosse—that is, all quartets{aa′|bb′} wherea, a′ ∈ A andb, b′ ∈ B ande induces the spli
{A|B}. The error bounds have the formm

√
q

e
wherem is a small constant—the largerm,

the larger the number of quartet errors around an edge that can be handled. TheQ∗ method
can be viewed as a cleaning method in whichm = 0. Theglobal cleaning method sets
m = 1, and thelocal cleaning method setsm = 1/2. These methods are guaranteed
recover every edge of the true tree for whichQ contains a small enough number of quar
errors. Thehypercleaning method allowsm to be an arbitrary integer and thus has
potential to recover more edges. However, its running time is very high—proportio
n7 · m4m+2—so that it is impractical form larger than 5.

The final quartet-based method we examined is the best known and the most freq
used by biologists [17,20,26]: the Quartet-Puzzling (QP) method [28]. This method
computes quartets using an ML-based heuristic and then uses a greedy strategy to c
a tree on which many input quartets are in agreement. QP uses an arbitrary ordering

1 The star tree onn leaves hasn+1 nodes andn edges and is composed of a central node to which alln leaves
are directly connected.
U
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constructs the optimal quartet on the first four, then inserts each successive taxon
attaching the new leaf to an edge of the current tree so as to optimize a quarte
score. Because the input ordering of taxa is pertinent, QP uses a large number of
input orderings and computes themajority consensus of all trees found. (The majorit
consensus is the tree that contains all bipartitions that appear in more than half of th
in the set and is a well-known consensus method among biologists.) Thus QP imp
seeks to return a tree in which every edge is “well-supported,” in the sense that eac
appears in more than half the trees obtained during the algorithm and has (presu
many supporting quartets.

2.6. Previous experimental studies of quartet methods

Berry et al. conducted experimental studies of various QC methods [2,4]. They evolved
sequences on Kimura-Two-Parameter (K2P) model trees,2 compared the quartets inferre
by various methods with the quartets of the true tree, and determined which edges
model tree could be reconstructed by their QC method. They varied evolutionary
and sequence lengths, but only examined trees with 10 taxa. Their results show
QC methods, especially hypercleaning, outperform theQ∗ method with respect to tru
positives. By design, the QC methods cannot fail to recover an edge that is recovered
Q∗ method. So what is noteworthy in the experiments is that the QC methodsdid succeed
in obtaining additional edges. Because the dataset sizes used in these experiments
small (only 10 taxa), these results may not generalize to larger numbers of taxa. W
[31] used 12 taxa and the Jukes–Cantor model in conducting simulation studies to
the accuracy of quartet inference by various methods, including (local) NJ, ML, max
parsimony, and variants thereof. He found, as we did, that NJ (using distances correc
the model of evolution) tended to return better quartets than ML under many cond
Once again, however, the focus on a small fixed number of taxa limits the significan
the results. Finally, no comparison was made between QC methods and NJ or oth
reconstruction methods.

3. Theoretical bounds on the convergence rates

We begin with the known upper bounds on the convergence rates of NJ and tQ∗
method. Surprisingly, these are identical [1,7], although experimental studies strong
suggest that NJ obtains accurate reconstructions of trees from shorter sequencesQ∗
throughout the parameter space of Jukes–Cantor trees [13]. We then discuss upper boun
on quartet cleaning. Experimental results illustrating the tightness of the upper boun
be found in [13,14] and Section 5.7.

Theorem 3.1. Let f, g, ε > 0 be arbitrary constants with f < g. Denote by Q∗(S) the tree
reconstructed on S by the Q∗ method and by NJ(S) the tree reconstructed by NJ. There

2 The K2P model [18] is a slight generalization of the Jukes–Cantor model in which the substitution
among nucleotides are defined by two parameters, rather than just one.
U
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is a constant c > 0 such that, for all Jukes–Cantor model trees (T , {λe}) on n leaves with
0 < f � λe � g < ∞ for all e ∈ E(T ), and for a set S of sequences generated randomly
on (T , {λe}),

Pr
[
Q∗(S) = NJ(S) = T

]
> 1− ε

if the sequence length exceeds c logn · eO(g·diam(T )), where diam(T ) is the largest number
of edges among all paths in T . (Note that c depends on g and ε.)

Since the diameter of ann-leaf tree can be as much asn − 1 (and has expected valu
in Ω(

√
n) for random trees [7]), Theorem 3.1 shows that theQ∗ and NJ methods wil

converge from sequences that grow exponentially inn. While Theorem 3.1 provides onl
an upper bound, earlier experimental work shows that theQ∗ method performs quite
poorly wheng and diam(T ) are both large [14], and that NJ is also affected, althou
less severely [13].

We now consider the convergence rates of the QC methods. The error bound u
QC methods is a multiple of

√
qe, so that the ratio of permitted errors to the numbe

quartets around an edge ism/
√

qe, wherem is a constant depending on the choice of Q
method. (Recall that we havem = 1 for the global cleaning method andm = 1/2 for the
local cleaning method.) Becauseqe is Ω(n2) andm a small constant, this ratio rapid
approaches 0 as the number of taxa increases. For example, consider an edge in a
tree producing a 20:30 split. The number of quartets around this edge is 82, 650, so that
the bound for local cleaning is only 144; hypercleaning withm = 5 brings this bound up
to 1440. Thus, for 50 taxa, even hypercleaning has an error tolerance on some ed
is less than 2% of the total number of quartets for this edge.

The sensitivity of QC methods to errors suggests that, for largen, QC methods will be
close in performance to theQ∗ method. As soon as the number of errors around each
exceeds the cleaning threshold, a QC method behaves identically to theQ∗ method. As
noted earlier, the convergence rate of theQ∗ method is bounded from above by a functi
that grows exponentially inn, suggesting that theQ∗ method might be impractical. I
cleaning methods tend to perform only as well as theQ∗ method for largen, then they will
not scale well. In Section 5.7, we present experimental results that support this obser

Consider therefore a hypothetical cleaning method we will callHypoClean. This
method is guaranteed to recover an edgee if the number of quartet errors arounde is
at most one third of the quartets around the edge—a much more generous bound th
used in local cleaning or than that used by its authors in hypercleaning. In the follo
theorem, we establish a bound on the sequence length that suffices forHypoClean to be
accurate on a random Jukes–Cantor tree.

We require the following lemma.

Lemma 3.1. The median diameter of all (2n − 5)!! unrooted, leaf-labeled, binary trees on
n leaves is Θ(

√
n).
U
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Proof. Penny and Steel [23] gave formulas for the distribution of interleaf distances
such trees under the assumption that all(2n − 5)!! such trees are equally likely, obtainin

µ(D) = 22n
/(

2n

n

)
and σ 2(D) = 4n − 6− µ(D) − µ2(D).

Since any nondegenerate distribution must have its median within[µ − σ, µ + σ ], our
conclusion follows. ✷
Theorem 3.2. Let f, g, ε > 0 be arbitrary constants with f < g and denote by HC(S) the
tree reconstructed on S by the HypoClean method. Then there is a constant c such that, for
Jukes–Cantor model trees, (T , {λe}) with 0 < f � λe � g < ∞ for all e ∈ E(T ), and for a
set S of n sequences generated randomly on T , we have Pr[HC(S) = T ] > 1− ε whenever
the sequence length exceeds c logn · eO(g·√n), where the constant c depends on g and ε.

Proof. Theorem 3.1 shows that quartets of low diameter are more easily reconst
from short sequences than are quartets of high diameter. Assume that we can c
reconstruct the “smallest-diameter” half of the quartets with high probability—we sim
guess the remaining quartets. We will then correctly reconstruct 2/3 of the quartets with
high probability. What sequence length is required for this? Solving the smaller h
the quartets is no harder than solving the median-diameter quartets. By Theore
this latter task is achieved with high probability when the sequence length is at
O(c logn · eO(g·md(T ))), where md(T ) is the median diameter ofT . By Lemma 3.1, this
quantity isΘ(

√
n). Therefore, the sequence length that suffices to reconstruct the tru

with high probability using theHypoClean method isO(c logn · eO(g·√n)). ✷
We have established the same form of (exponential) upper bound on the sequence

requirements of all cleaning methods. This upper bound suggests that cleaning m
may not scale well—if the upper bound is approached by any cleaning method, that m
will require very long sequences to ensure high accuracy, yet such sequences may
not be available.

4. Experimental design

4.1. Overview

We used Jukes–Cantor model trees with varying numbers of taxa and rates of ev
to generate a large number of synthetic datasets of varying lengths. For each
generated, we computed the NJ and QP trees on the entire dataset and two sets of
one based upon (local) ML,QML , and one based upon (local) NJ,QNJ. We then applied
various cleaning methods to each of the setsQML andQNJ. We use the terms “local” an
“global” to distinguish between the local application of running a method on each s
four leaves to determine the quartet topology versus the global application of runni
method on the complete set of leaves. We compared quartets ofQML , of QNJ, and of the
reconstructed trees, as well as the reconstructed trees themselves, against the true
accuracy.
U
N



ARTICLE IN PRESS
S0196-6774(03)00049-X/FLA AID:1287 Vol.•••(•••)
ELSGMLTM(YJAGM):m1 2003/05/02 Prn:21/05/2003; 7:52 yjagm1287P.10 (1-21)

by:Ramune p. 10

10 K. St. John et al. / Journal of Algorithms ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

inary
number
ngth”
anging

r the
der
es, our

es, it is
tically
r
ed
the runs
ples in
ith this

the true

ies, is
small
trees

ogical
–200

d taxa).
un our
t least

lection
h
into 10
0, and
e above
usually
months
C

O
R

R
E

C
T
E

D
 P

R
O

O
F

4.2. Model trees

We randomly generated model tree topologies from the uniform distribution on b
leaf-labeled trees. For each edge of each tree topology, we generated a random
(from the uniform distribution) between 1 and 1000 and used that number as the “le
of the edge. We then scaled each such base model tree by a multiplicative factor, r
from 10−7 to 10−3. This process produces Jukes–Cantor trees withλe values ranging from
a minimum of 10−7 to a maximum of 1. We generated random DNA sequences fo
root and used the programSeq-Gen [24] to evolve these sequences down the tree un
the Jukes–Cantor model of evolution, thus producing sets of sequences at the leav
synthetic datasets.

4.3. Statistical considerations

Because the number of distinct unrooted, leaf-labeled trees onn leaves is(2n − 5)!!
and because our input space is further expanded by the choice of evolutionary rat
not possible to take a fair sample of the entire input space. In order to obtain statis
robust results, we followed the advice of McGeoch [19] and Moret [21] and used a numbe
of runs, each composed of a number oftrials (a trial is a single comparison), comput
the mean outcome for each run, and studied the mean and standard deviation over
of these events. This approach is preferable to using the same total number of sam
a single run, because each of the runs is an independent pseudorandom stream. W
method, one can obtain estimates of the mean that are closely clustered around
value, even if the pseudorandom generator is not perfect.

4.4. Parameter space

A critical parameter of our study, one that has not been explored in most prior stud
the number of input taxa. Previous experimental studies have often been limited to a
number of taxa due to computational problems. However, to resolve phylogenetic
of interest to biologists, algorithms must scale reasonably, both in terms of topol
accuracy and running time, to problems of the size that biologists typically study (20
taxa), as well as those they would like to address (a few hundred to several thousan

Because of the dedicated use of two multiprocessor clusters, we were able to r
test suite for 5, 10, 20, and 40 taxa (full quartet-based methods remain impractical, a
in terms of experimental studies, for large numbers of taxa). Our tests included a se
of eight expected evolutionary rates, from 5× 10−5 to 5× 10−1 per tree edge. For eac
evolutionary rate and problem size, we generated a total of 100 topologies, grouped
runs of 10 trials. All tests were conducted for four sequence lengths: 500, 2000, 800
32,000 (we note that sequence lengths above 1000 are considered long and thos
5000 extremely long; thus our study explores longer sequence lengths than are
encountered in practice). In all, our study used 16,000 datasets and required many
of computation on the two clusters.
U
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4.5. Algorithms

We tested four different phylogenetic reconstruction methods: NJ, local quartet-cle
for quartets based on (local) NJ, local quartet-cleaning for quartets based on
ML, and QP. The code for QP isTREE-PUZZLE, available from their authors a
www.tree-puzzle.de; we modified it only by removing its interactive interface. All o
code is our own. For quartet-cleaning, our accuracy measurements were made by c
the number of quartets that were in error around each edge. If the error was bel
necessary threshold for the given method, then the edge was counted as being c
reconstructed. For QP and NJ, we counted the number of true positives between t
tree and the tree method constructed. We ran all four algorithms sequentially on a
set of sequences for one trial, stored all data that was generated, then proceeded to
trial, so that each of the algorithms was run on exactly the same data.

4.6. Measurements

Our focus in this study is the accuracy of solutions generated by the variou
reconstruction methods. Because most methods are time-consuming, the running
briefly addressed; our aim was not to fine-tune implementations, but simply to ob
rough idea of which methods can be run in a reasonable amount of time on a conve
machine for realistic datasets. We compare running times as gathered on our platfo
of which are 450 MHz Pentium III machines running Linux.

To assess topological accuracy, we measured the number of true positives (ed
the true tree that appear in the reconstructed tree). For cleaning methods, we m
these values before and after cleaning. For each run of 10 trials, we retained only th
values. Our results are composed of the means for each set of 10 runs.

5. Experimental results

Except for runs on 5 taxa, the standard deviations we observed remained consi
1–2% of the mean; with 5 taxa, standard deviations were (as expected) larger, re
10–15% of the mean. In all of our figures, QCNJ and QCML denote quartet-clean
quartets derived by local NJ and by local ML, respectively.

5.1. Estimating quartets

The technique used to construct the setQ of quartets provided to quartet-based meth
can have a significant impact on the performance of these methods. The phylog
community has generally expected that (local) ML would produce more accurate qu
than (local) NJ. We therefore compared local ML and local NJ in terms of the quarte
QNJ andQML , that they computed. As a reference point, we also examined how glob
performed in terms of the trees it induced on each fourtuple of leaves from the glob
tree. Figure 6 shows the proportion of true positives in each of the sets of quartets.
U
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Fig. 6. Percentages of quartets computed by local ML, local NJ and induced by global NJ that agree with
tree for various numbers of taxa and a sequence length of 500. Hereλe refers to the expected number of eve
on a random edge in the model tree.

The relative performance of local NJ and local ML (NJ and ML applied to e
quadruple of leaves to estimate the quartets) is interesting. At the highest rates of ev
(see Fig. 6(a)), except for 5-taxon trees, local NJ slightly outperforms local ML, bu
gap increases with increasing numbers of taxa. At the second highest rate of evoluti
Fig. 6(b)), they are indistinguishable up to 40 taxa. However, at the lowest rate of evo
(see Fig. 6(c)), local ML slightly outperforms local NJ, although the gap decreases
increasing numbers of taxa. Overall, while the choice of local NJvs. local ML does
influence the results, our data do not allow us to establish a preference for one o
other: neither ML nor NJ dominates the other in terms of accuracy, but each has a ra
which it yields slightly better quartet estimations.

A comparison between these sets of quartets and the quartets obtained by using
NJ (i.e., the quartets induced by the NJ tree) is also interesting. At the lowest r
evolution (Fig. 6(c)), except for 5-taxon trees, local ML is superior to global NJ
both are superior to local NJ; however, the gap between the three ways of com
quartet trees narrows with increasing number of taxa. At the middle rate (Fig. 6(b)
methods are indistinguishable (up to 40 taxa), while at the highest rate (Fig. 6(a)),
NJ is clearly superior, and the gap between global NJ as a quartet method and t
other quartet methods increases with increasing numbers of taxa. Thus, for high r
evolution (and potentially for all large enough trees), the best quartet estimator may s
be global NJ—i.e., compute the NJ tree and use its quartets.

In terms of the quality of the quartets obtained, the best accuracy was obtained
second highest rate of evolution. At the lowest rate of evolution, only 1 in 2000
changes on average around each edge, so that, for a sequence length of 500, roug
of the edges have changes on them. Thus, although it may be possible to guess
U
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accurately, the best possible reconstruction at the lowest rate will only yield abou
of the edges—approximately what the best performing method (local NJ) obtains.
highest rate the accuracy starts to decrease with more than 10 taxa. A decrease in a
with increasing numbers of taxa for a fixed sequence length is predicted by theo
only for information-theoretic reasons); hence, even for the lower rates of evolution,
number of taxa increases, the accuracy of the quartet estimations should decrease.

5.2. Two measures of accuracy: quartets and edges

Although the standard measure of accuracy is the number of true edges
reconstructed tree, the percentage of correctly inferred quartets has also been us
surrogate [4]. However, correlation between correct quartets and edges of the tru
returned by a method has not been shown. We address this issue by examin
performance of QP and global NJ with respect to both criteria. Figures 7 and 8 m
clear that edge accuracy is a more demanding criterion than quartet accuracy, and
therefore be used to assess performance of phylogenetic reconstruction method
global NJ and QP can return trees with 80% of quartets correct, but only 20% of
correct. Worse yet, both methods, except when the percentage of correct quartets
to 100%, can return fewer than 80% of the true tree edges (in the case ofQP , some such
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Fig. 7. Percent of true tree edges recovered by global NJ for variousλe as a function of the percentage of corre
induced quartets for 40 taxa and two sequence lengths.
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trees had only 60% of the true tree edges). Because failure to obtain at least 90 or
the edges can be unacceptable to systematists, quartet-based measures of accura
acceptable surrogates for measures of accuracy based on true tree edges.

5.3. Sensitivity to input quality

Methods that operate by estimating quartets and then combining them into a
tree can be greatly affected by the quality of the input quartets. Figure 9 shows ho
methods respond to input quality. QC methods, as well as the other quartet meth
study, require a larger fraction of correct input quartets than the fraction of true tree
that they return.

5.4. Scaling of methods with increasing numbers of taxa

Theory predicts that the accuracy of methods will eventually degrade as the n
of taxa increases while sequence length and average edge length (the expected nu
changes for a random site on each edge) are held fixed. Figure 10 shows the edge a
achieved by all six methods as a function of the number of taxa for a sequence length
and for three different average edge lengths. Figure 11 shows the same set of resu
sequence length of 2000. All methods decrease in accuracy as the number of taxa in
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at 2000, with each graph showing runs for all numbers of taxa and all average edge lengths.
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even though both NJ and QP show an initial increase. QC provides a distinct improv
over theQ∗ method, whether the quartets are computed using local ML or local NJ. Q
and QCNJ are very close in performance, although QCNJ slightly outperforms Q
similarly Q∗NJ slightly outperformsQ∗ML. Of the five quartet methods, QP is the be
throughout the range of parameters studied, but global NJ completely dominates it (a
other quartet methods we study).

5.5. A comparison between Q∗ and QC

QC can be seen as an improvement to theQ∗ method, becauseQ∗ does not permi
errors around any reconstructed edges, while QC reconstructs every edge around
there is a bounded number of errors. In Figs. 10 and 11, we showed performan
different rates of evolution as the number of taxa varies, which gives evidence th
methods return additional true edges under many conditions. In Fig. 12, we explo
relative improvement in edge recovery obtained on local NJ or local ML quartets by
a QC method instead of theQ∗ method. Curiously, the improvement obtained in ter
of quartet accuracy is less satisfactory, never averaging more than 2% for low ra
evolution and for large number of taxa at high rates of evolution. QC provides the la
improvement when almost all input quartets are correct; indeed, this is what the
about QC suggests. In particular, the most improvement occurs at a high rate of evolu
not our highest rate, but our second highest rate, when the error rate in input quartets
lowest.

5.6. The effects of sequence length

Although sequence length and rate of evolution have a strong effect on the ab
performance of phylogenetic methods, the relative ordering of NJ, QP, and QCNJ is
constant throughout our experiments: NJ is the best followed by QP, and then by Q
Figure 13 presents data for 40 taxa at three different rates of evolution, for seq
lengths varying from 500 (a typical length) up to 32,000 (a quite large length). Note
all methods increase in accuracy with increasing sequence length (as expected s
methods are statistically consistent under the Jukes–Cantor model).
U
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5.7. Experimental bounds on sequence length

Theorem 3.1 provides only an upper bound on the sequence length sufficie
accurate reconstruction by theQ∗ method; no theoretical lower bound is known for t
necessary sequence length. Using the same experimental set-up as before, we m
the sequence length required to recover accurately all of the edges at least 90% of t
for global and local quartet cleaning (with neighbor-joiningdetermining the topology o
quartets). We generated a tree (under the distributions described above), evolved se
down the tree of length 500, and used those sets of sequences as inputs to the me
a method fails to recover all of the edges of 9 out of 10 of the trees, the sequence le
increased by 500, and we repeat the reconstruction. We stop this process when a
has been successful, or the sequence length reaches 32,000 (a very large length).
that, at all evolutionary rates, NJ outperforms QCNJ in the sequence lengths nee
reconstruct the edges 90% of the time (see Fig. 14).
U
N



ARTICLE IN PRESS
S0196-6774(03)00049-X/FLA AID:1287 Vol.•••(•••)
ELSGMLTM(YJAGM):m1 2003/05/02 Prn:21/05/2003; 7:52 yjagm1287P.17 (1-21)

by:Ramune p. 17

K. St. John et al. / Journal of Algorithms ••• (••••) •••–••• 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

rates of
quires

t-
ds. The
C
O

R
R

E
C

T
E

D
 P

R
O

O
F

% edges

seq. length0

20

40

60

80

100

500 2000 8000 32000

�
�+

�
�+

�
�+

��+

λe = 0.0005

% edges

seq. length0

20

40

60

80

100

500 2000 8000 32000

�

�

+

�

�

+
�

�
+ ��+

λe = 0.05

% edges

seq. length0

20

40

60

80

100

500 2000 8000 32000

�

�

+

�

�

+

�

�

+

�

�

+

λe = 0.25

• NJ

◦ QCNJ
+ QP

Fig. 13. Accuracy of various methods as a function of sequence length for 40 taxa.

32000

16000

4020

seq len

# taxa

�
�

�

�

�

�

�
�

λe = 0.0005

32000

16000

4020

seq len

# taxa

�

�

�

�

�

�

�

�

λe = 0.05

�QCNJ

�Global NJ

Fig. 14. The sequence length required to accurately reconstruct all of the edges 90% of the time. For low
evolution (left), QCNJ and NJ perform comparably. At higher rates of evolution (right), NJ consistently re
shorter sequences to reconstruct the true tree.

6. Discussion

6.1. Quality of quartets

The technique used to construct the setQ of input quartets provided to quarte
based methods can have a significant impact on the performance of these metho
U
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phylogenetics community has generally expected that local ML would produce
accurate quartets than other local quartet inference methods. However, in our s
neither local ML nor local NJ dominates the other as a quartet estimator; instead
ML outperforms local NJ only for the lowest rates of evolution, whereas local NJ cl
outperforms local ML for higher rates. Because our observations differ from the rec
wisdom in the field, we offer the following possible explanation. In earlier studies12],
the performance of local ML and local NJ as quartet estimators was studied by exp
simulating evolution on 4-taxon trees. Here, we have simulated evolution on large
and then looked at the quartets defined by these larger trees. Good performance on
drawn from a large tree is not the same as good performance on quartets drawn from
different sample space. While it is possible to sample 4-taxon model trees so as to p
the same kind of quartets we gave as input to our methods, the studies in [12] did not use
such a sampling strategy.

6.2. Robustness of quartet methods to quartet errors

How robust are quartet-based methods with respect to errors inQ? TheQ∗ method is
the least robust. QC methods provide some error tolerance, sufficient to recover add
true edges even under high rates of evolution and for moderate numbers of taxa. Ho
both of these methods are inferior to QP in terms of error tolerance, even though Q
fails to get a good estimation of the true tree when the input set of quartets has over
errors (forn = 40). Finally, in our experiments, NJ was always at least as accurate a
and nearly always much better. Thus, the reason quartet methods fail to recover goo
is not that the input distance matrix is too noisy for any method to recover a good est
of the true tree.

6.3. Running times

NJ was clearly the fastest method tested. QC and QP methods must compute alΘ(n4)

quartets and hence must takeΩ(n4) time. ML-based methods also construct quar
through expensive estimation methods, the running time of which increases sharp
increasing sequence length. Thus QCML and QP were by far the slowest of the m
tested, slow enough that running them on more than a hundred taxa appears infea
present. With default settings, QP takes more than 200 days of computation to anal
runs of ten trials each for a single set of parameters on 80 taxa with a sequence
of 500. In contrast, NJ dispatches the same analysis in about 30 minutes.

6.4. Comparison between methods

Our experiments clearly establish a linear order of accuracy for the methods we s
(except under very low rates of evolution): NJ (applied globally) is the preferred me
with QP second, the QC methods significantly behind QP, and theQ∗ methods somewha
behind the QC methods. The particular technique used to infer quartets also h
influence on the quality of the trees obtained by the quartet methods, with QCNJ
better than QCML andQ∗NJ often better thanQ∗ML (at least for large enough trees wi
U
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moderate to high rates of evolution). Furthermore, global NJ requires significantly s
sequences to reconstruct the trees than the quartet methods we studied.

7. Conclusions and open questions

Why does global NJ outperform the quartet methods throughout the parameter sp
examined (except on some 5-taxon trees)? As Fig. 14 shows, the actual convergen
for both global NJ and QCNJ appear much better than exponential, suggesting th
upper bounds on the convergence rate are loose for both cleaning methods and NJ
same figure also shows clearly that the convergence rate of NJ is much better than
QCNJ. The sharp degradation in accuracy that we see in cleaning methods with inc
numbers of taxa suggests that their convergence rate, while perhaps subexpone
asymptotically poor. In contrast, global NJ (and, to a lesser extent, QP) degrades fa
gracefully, and only when the rate of evolution is close to saturation. The good perform
of QP as a quartet method does not seem to result from its use of ML-based qu
since by that reasoning QCML should demonstrate a comparable improvement over
(which it does not). One reason for the better behavior of QP could be the manner in
it combines quartets. We suspect that the issue is partly that theQ∗ and QC methods plac
too stringent a requirement on the edges; by comparison the QP method places no a
restriction. Thus, we suspect that the ability of global NJ and QP to handle noisy
data lies in the specific techniques each uses to construct trees and the fact that
places strict bounds on errors. This in itself may help explain why QP outperform
other quartet methods we studied, but it does not explain why global NJ outperform
We conjecture that methods which operate by combining quartets do not make us
available information: we suggest that quartet-based methods may be impeded b
very structure, in having to decide the tree based on quadruples of taxa, without ref
to the other taxa.

These observations suggest that quartet methods, if they are to be competitiv
global NJ, need to be flexible in combining quartets into a single tree on the fu
of taxa. Because of the lack of correlation between quartet accuracy and edge ac
seeking to solve the quartet compatibility problem may not produce the best trees
Therefore, quartet methods with good performance (reaching or improving upon
NJ’s performance) will require both more flexibility and greater sophistication than
current quartet methods.

Another experimental study of quartet-based methods [25] compared QP with variant
of global NJ, ML, and maximum parsimony, on 12-taxon trees. They noted poor
formance by QP with respect to the other methods studied, which they attribute to
weighting of the quartets (pointing out how difficult it is to decide how much weigh
confidence to give each quartet). This study, along with our results, suggest tha
flexibility in weighting quartets could improve the accuracy of quartet-based met
We conclude with the following comments about algorithm design and perform
studies in phylogenetics. From the perspective of experimental performance s
and algorithm design, global NJ should be regarded as a universal lowest co
denominator in phylogeny reconstruction algorithms. Its speed makes it easy
U
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under all circumstances; its topological accuracy makes it an acceptable starting po
tree reconstruction in biological practice. We suggest that a proposed method sho
compared with NJ and abandoned if it does not offer a demonstrable advantage o
for substantial subproblem families.
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