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Abstract

We present the results of a large-scale experimental study of quartet-based methods (qaartet
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cleaning and puzzling) for phylogeny reconstruction. Our experiments include a broad ranges of
problem sizes and evolutionary rates, and were carefully designed to yield statistically robust results
despite the size of the sample space. We measure outcomes in terms of numbers of edges of thg true
tree correctly inferred by each method (true positives). Our results indicate that these quartet-bgsed
methods are much less accurate than the simple and efficient method of neighbor-joining, particujarly
for data composed of short to medium length sequences. We support our experimental finding& by
theoretical results that suggest that quartet-cleaning methods are unlikely to yield accurate trees with
less than exponentially long sequences. We suggest that a proposed reconstruction method $hould
first be compared to the neighbor-joining method and further studied only if it offers a demonstrable
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practical advantage.
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1. Introduction 1
2

Reconstructing the evolutionary history of a group of taxa is a major research theust
in computational biology. An evolutionary history not only gives relationships among
taxa, but also an important tool for determining structural, physiological, and biochemfeal
properties $,3(J. Research on tree reconstruction has focused on reconstructingséan
evolutionary tree (phylogeny) under various optimization criteria. However, almost all
optimization problems of interest to biologists are NP-hard (€ fpr a review), so 8
most biologists use heuristic methods or surrogate optimization criteria. 9

A popular family of phylogenetic heuristics is based quartets. A quartet is an 10
unrooted binary tree for a quadruple of taxa. For most optimization problems, it is possible
to determine the optimal tree on a set of four leaves by analyzing all three possible trees.
Quartet-based methods compute a quartet under an optimization criterion for each set of
four taxa and then combine the quartets to yield a tree on the full set of taxa. Because there
are © (n*) quartets, many quartet-based methods ruim®) time, which is currently 15
impractical for a hundred or more taxa. 16

How accurate are quartet-based methods? In biological applications, the true, historical
tree cannot be ascertained exactly, which makes assessing the quality of reconstrueation
methods problematic (one exception is laboratory-created phylogenies for virusesand
some bacteria, as illustrated in the study by Hillis et ab]J. As a consequence, the 20
method of choice for evaluating heuristics has been simuladlofsuch a simulation, an 21
ancestral biomolecular (DNA, RNA, or amino-acid) sequence is evolved along a “mogel
tree,” producing a synthetic set of biomolecular sequences at the leaves. Phylogeretic
reconstruction methods are then assessed based upon how accurately they reconstruct
the model tree (the “true” tree). Biologists typically evaluate performance accordingeto
the topological accuracy of the reconstructed unrooted tree, because the tree topology is
interpreted as the order of past evolutionary events, that is, it yields the relationships among
species, genes, or other taxa. (The reconstructed tree is typically unrooted, as detern#hing
a root is a very difficult problem of its own.) Topological accuracy is typically measured
by the true positives, i.e., the percentage of edges of the true tree found in the reconstrected
tree. 31

Among the distance-based methods (methods that transform input sequences irto a
distance matrix and then construct the tree from that distance matrix), none is more wietely
used by biologists than theeighbor-joining (NJ) method P7]. Not only is it quite fast 34
(0(n®) for n taxa R9]), but experimental work has also shown that the trees NJ construgts
are reasonably accurate, as long as the rate of evolution is neither too low nor too hkgh.
However, there is no comparative study of NJ and quartet-based methods. 37

We present the results of a detailed, large-scale experimental study of quartet-bzsed
methods and NJ under the Jukes—Cantor model of evoluti@nQur results indicate that, 39
under this model, NJ always outperforms the quartet-based methods we examined, in t@rms
of both accuracy and speed. We suggest that NJ, already the most popular distance-based
method, should be used as a minimum standard in the assessment of phylogenetic methods:
a proposed method should be compared with NJ and shown to be at least compasable
in performance to NJ before it is studied in depth. We also present new theory abBeut
convergence rates of quartet-based methods which helps explain our observations. 45
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2. Terminology and review

w NP

2.1. Smulations and the Jukes—Cantor model
4
A model tree for sequence evolution is a paiff;, {1.}), whereT is a rooted unlabeled s
tree and, for each edgeof T, 1. is the expectation of a Poisson distribution describing the
number of changes at each site in the sequence alonge@igeJukes—Cantor model [L6] 7
is the simplest Markov model of biomolecular sequence evolution. In that model, a DNA
sequence (a string over the set of the four nucleotifi¢sC, T, G}) at the root evolves o
down a rooted binary tree. The sites (i.e., the positions within the sequences) evalve
independently and identically, with equal probabilities of transition from one nucleotide
to any other. A Jukes—Cantor model tree is a model tree in which the site changes take
place according to the Jukes—Cantor model. 13
14
2.2. Measures of accuracy 15
16
Let T be the true tree (that used in the model tree) and’ldbe a tree produced by 17
a reconstruction method, with both and 7’ leaf-labeled by a sef of taxa. The edges 1s
of T’ are often called theeconstructed edges since the method is trying to reconstruct thes
original tree. The true and inferred trees are compared only with respect to their underlying
unrooted versions, in part because the reconstructed tree is typically unrooted and inppart
because the topological structure of a tree does not depend on the location of its peot;
therefore, in the remainder of this discussion, all trees are assumed to be unrooted. 23
For each edge € E(T), we define the bipartitiom, induced onS by the deletion of 24
the edgee from T. The bipartitionz, can also be written as theplit, {A|B}, whereA s
consists of all the leaves (that is, elementspbn one side of the bipartition and where,s
Bis justS — A. (These definitions apply to any tree on the $eif leaves.) Methods for 7
reconstructing trees are evaluated according to the degree of topological accuracy obtained,
by comparing the sets of splits or bipartitions of the two trees. ffbe positives are 2
the edges € E(T) whose split also occurs in the splits ©f. Figure 1 illustrates this zo
concept (note that the trees are drawn as rooted, but are compared only with respegt to
their unrooted versions). 22
33
2.3. Satistical performance issues 34
35
Under the Jukes—Cantor model, a methdis statistically consistent if, for every 44
model tree(T, {A.}) and everye > 0, there is a sequence lendgthiwhich may depend
38

39
40

QD
o

41

42
43

Fig. 1. True positives: The true tree is on the left. In the tree on the right, the true positives (with respect td*the
tree on the left) are indicated by solid lines. The other edge of the tree is indicated by dotted lines. 45
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onM, T, {i.}, ande) such thatM recovers the unrooted version Bfwith probability at 1
least 1- ¢, when the method is given sequences (generated under the Jukes—Cantor model
on (T{A.})) of length at least. 3

The sequence length required by a method is a significant aspect of its performance,
because real data sets are of limited length (typically bounded by a few hundred to a
few thousand nucleotides). Computational requirements are also important, but it may be
possible to wait longer or use more powerful machines, whereas it is not possible torget
longer sequences than exist in nature. Consequently, experimental and analytical stadies
have attempted to bound the sequence lengths required by different phylogenetic methods.
The rate at which a method converges to 100% accuracy as a function of the sequence
length is called theonvergencerate. 11

12
2.4. Neighbor-joining 13
14

Neighbor-Joining (NJ) was formally described in 19827] and has been a mainstay of ;5
phylogeny reconstruction among biologists ever since. NJ is a cubic-time distance-based
algorithm that begins by creating a node for every taxa in the input set and making a
list of those nodes. It proceeds by repeatedly pairing the two “closest” nodes from the
list, adding a new node (“the parent”) with edges to the selected pair, and replaging
that pair with a new node. As this process progresses, the list of nodes available topair
shrinks and an acyclic graph is formed by the edges added with the new nodes. Fhis
process continues until the list of nodes is empty and a tree on all the nodes has bgen
created. As with all distance-based phylogenetic reconstruction methods, the input tg;NJ
is a dissimilarity matriXd;;}, where in practice;; is corrected, according to assumptions,
about the stochastic model of evolution underlying the data, in order to account for multigle
hits. Even with this correction, however, it does not necessarily follow that two léaves
andj are siblings ifd;; is the minimum value (even # is a tree metric). Therefore, NJ ,,
computes a secondary dissimilarity matfix; }, for which it does follow that and j are  ,,
siblings if s;; is minimized and? is a tree metric. At each step, then, NJ chooses the pajr
of leaves with the smallest; distance. NJ eventually returns a binary (i.e., fully resolved,),
tree and is statistically consistent for the Jukes—Cantor model of evolution, and for gny
model for which statistically consistent distance corrections exist. (§e8dction 7.8
for a very readable discussion of NJ, and a sketch of Atteson’s pibof fts statistical
consistency.)

32
33
34
35
2.5. Quartet-based methods s
A quartet is an unrooted binary tree on four taxa. A quartet induces a unique blpart|t|30n

of the four taxa and can be denoted by that bipartition. If the taxgaatg ¢, d} C S, we s

40

<> < :

{ab|cd} {ac|bd} {ad|bc} 43
44

Fig. 2. The three possible quartets on four téxab, c, d} and their bipartitions. 45
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quartet{ab|cd} is correct
quartet{ae|bc} is an error

QD
o

Fig. 3. For this model tree, the quartetb|cd} agrees with the tree, while the quartdtie|bc} is an error with
respect to the tree.

© 0 N o g b~ W N P

can usdab|cd} to denote the quartet that padrsvith b andc with d (see Fig. 2). A quartet 10
{ab|cd} agrees with a treeT if all four of its taxa are leaves df and the path fromm to 11
b in T does not intersect the path fraemo d in T. Equivalently,{ab|cd} agrees with a 12
tree if the homeomorphic subtree inducedlirby the four taxa is the quartet itself. Theis
quartet{ab|cd} is an error with respect to the tre€ if it does not agree witlT". Figure 3 14
illustrates this idea. LeQ(T) = {{ab|cd} | a,b,c,d € S and{ab|cd} agrees withT'}. If 15
Q(T) denotes the set of all quartets that agree WiththenT is uniquely characterized by 16
Q(T) and can be reconstructed frdfin polynomial time [/]. 17

Quartet-based methods operate in two phases. In the first phase, they constructia set

Q of quartets on the different sets of four taxa. A popular approach is to use maximiam
likelihood (ML), a computationally intensive but statistically sophisticated metB@¥]. 20
In the second phase, they combine these quartets into a tree on the entire set of taxa. In
practice, not all quartets are accurately inferred, so it is necessary for quartet methods
to handle incorrect quartets. Most optimization problems related to tree reconstruction
from quartets are NP-hard. An example of this is Maximum Quartet Compatibility 24
problem [L5], which seeks a tre@ for a given setQ of quartets such tha(7") N Q| is 25
maximized. 26
The methods studied in this paper have no performance guarantees with respect to the
Maximum Quartet Compatibility problem, although each of them is statistically consistens
under the Jukes—Cantor model of evolution. However, with the exception of Quartet
Puzzling, all quartet methods we examine do provide guarantees about the edges ab the
true tree that they reconstruct. These guarantees are expressed in tegradaferrors 31
around an edge, a concept we now define. 32
Consider an edgein the true tred’; its removal defines the spliA| B} on the elements 33
of S. Consider those sets of four leaviesa’, b, b’} with {a,a’} C A and{b, b’} C B. Let 34
t be a quartet on the leavés, a’, b, b'}. Note that there are three such possibilitiestfor ss
{ad’|bb’} (which agrees with the tre®) and two othersiab’|a’b} and {abla’b’}. The 36
quartetr is said to be amrror around ¢ if ¢ is not{aa’|bb’} (i.e., if t does not agree with 37
the treeT); see Fig. 4. Similarly, ifl’ is a proposed tree, ard is a set of quartets, then 38
t € Q is an error around edgec E(T’) if t = {abla’b’} or t = {ab'|a’b}, wherer, is the 39
bipartition{A|B}. 40
Two of the methods we study, the* method (also known as the Buneman methodit
and the Quartet Cleaning methods, can be described in terms of an explicit boundz2on
the number of quartet errors around the edges they reconstruct. We begin with thess
method B]. This method seeks thmaximally resolved tree T’ obeyingQ(T’) C Q. For 44
example, Fig. 5 contains a list of five quartefs, The only bipartition compatible with all 45
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c d e f 4

5

Fig. 4. The quartetce|df} is in error around each of the dotted edges in the tree 6

7

{abled) a b 8

{ab|ce} ®
{ab|de) 10
{ae|cd} i
{bc|de} ¢ d e 1

[N
IS

Fig. 5. Maximally resolved treg&’ (right) of a given set of quartets (left).

=R
o o

quartets is{ab|cde}, so that the maximally resolved tree for these quartBtscontains 17
only a single nontrivial edge. The set of quartets induce@hyQ(T’), is a proper subset 1s
of the input set of quartets): 19

Q(T") = {{ab|cd}, {ab|ce}, {ablde}} C Q. 20

21
Thus, by definition, there areo quartet errors around any edge in the tree’ with ,,
respect to the input set of quarteds This tree always exists, since the star trewially
satisfies the constraint on any set of quartets. @kéree is unique and can be constructed,
in polynomial time. By design, however, th@* method is conservative and generally,s
produces very unresolved treds. 26

Quartet-Cleaning (QC) methods 2,4,15 have explicit bounds on the number of quartet,
errors around each reconstructed edgAs with the 0* method, we start with an input ,g
set of quartetg). For each edge in the true treel’, let ¢, be the number of quartets that ,q
crosse—that is, all quartet§aa’|bb’} wherea, a’ € A andb, b’ € B ande induces the split 5,
{A|B}. The error bounds have the form,/q, wherem is a small constant—the larger, 5,
the larger the number of quartet errors around an edge that can be handlglt. rieehod 5,
can be viewed as a cleaning method in whieh= 0. Theglobal cleaning method sets 4,

m = 1, and thelocal cleaning method setsn = 1/2. These methods are guaranteed tg,
recover every edge of the true tree for whiglrcontains a small enough number of quartes
errors. Thehypercleaning method allowsn to be an arbitrary integer and thus has thegg
potential to recover more edges. However, its running time is very high—proportionalto
n’ - m**+2—so that it is impractical fom larger than 5.

The final quartet-based method we examined is the best known and the most frequggntly
used by biologists 1[7,20,2¢: the Quartet-Puzzing (QP) method R8]. This method
computes quartets using an ML-based heuristic and then uses a greedy strategy to congtruct
atree on which many input quartets are in agreement. QP uses an arbitrary ordering of faxa,

43

1 The star tree on leaves has + 1 nodes ana edges and is composed of a central node to which lathves 44

are directly connected. 45
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constructs the optimal quartet on the first four, then inserts each successive taxon in turn,
attaching the new leaf to an edge of the current tree so as to optimize a quartet-based
score. Because the input ordering of taxa is pertinent, QP uses a large number of rardom
input orderings and computes thajority consensus of all trees found. (The majority 4
consensus is the tree that contains all bipartitions that appear in more than half of the trees
in the set and is a well-known consensus method among biologists.) Thus QP implieitly
seeks to return a tree in which every edge is “well-supported,” in the sense that each edge
appears in more than half the trees obtained during the algorithm and has (presumably)
many supporting quartets. 9

10
2.6. Previous experimental studies of quartet methods 11

12

Berry et al. conducted experimental studies of various QC mettiodlsThey evolved 13

sequences on Kimura-Two-Parameter (K2P) model ffeesnpared the quartets inferredis
by various methods with the quartets of the true tree, and determined which edges ofsthe
model tree could be reconstructed by their QC method. They varied evolutionary rates
and sequence lengths, but only examined trees with 10 taxa. Their results showedithat
QC methods, especially hypercleaning, outperform @ffemethod with respect to true 1s
positives. By design, the QC methods cannot fail to recover an edge that is recovered bsthe
0* method. So what is noteworthy in the experiments is that the QC metlidacceed 20
in obtaining additional edges. Because the dataset sizes used in these experiments areiquite
small (only 10 taxa), these results may not generalize to larger numbers of taxa. Willson
[31] used 12 taxa and the Jukes—Cantor model in conducting simulation studies to agsess
the accuracy of quartet inference by various methods, including (local) NJ, ML, maximgm
parsimony, and variants thereof. He found, as we did, that NJ (using distances corrected for
the model of evolution) tended to return better quartets than ML under many conditiess.
Once again, however, the focus on a small fixed number of taxa limits the significancerof
the results. Finally, no comparison was made between QC methods and NJ or otherdree
reconstruction methods. 29

30

31
3. Theoretical bounds on the convergencerates 32

33

We begin with the known upper bounds on the convergence rates of NJ am@f thes,

method. Surprisingly, these are identical7, although experimental studies stronglyss
suggest that NJ obtains accurate reconstructions of trees from shorter sequeng®s than
throughout the parameter space of Jukes—Cantor ti€gd/Ne then discuss upper boundss;
on quartet cleaning. Experimental results illustrating the tightness of the upper boundsgan
be found in [L3,14 and Section 5.7. 39

40
Theorem 3.1. Let f, g, e > O bearbitrary constantswith f < g. Denoteby Q*(S) thetree ,;
reconstructed on S by the O* method and by NJ(S) the tree reconstructed by NJ. There  ,

43

2 The K2P model {8 is a slight generalization of the Jukes—Cantor model in which the substitution rat&
among nucleotides are defined by two parameters, rather than just one. 45
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isa constant ¢ > 0 such that, for all Jukes—Cantor model trees (T, {A.}) on n leaves with
O<f<i.<g<ooforallee E(T), andfor aset S of sequences generated randomly
on (Ts {)‘(3})1

Pr[Q*(S) =NJ(S) = T] >1—¢

if the sequence length exceeds ¢ logn - ¢4 aMT) 'where diam(T') is the largest number
of edgesamong all pathsin T'. (Note that ¢ dependson g and ¢.)

© 0 N o g b~ W N P

10

Since the diameter of am-leaf tree can be as much as- 1 (and has expected value **
in $2(/n) for random trees7]), Theorem 3.1 shows that the@* and NJ methods will **
converge from sequences that grow exponentially.iiVhile Theorem 3.1 provides only 3
an upper bound, earlier experimental work shows that @femethod performs quite i:
poorly wheng and diang7) are both large 4], and that NJ is also affected, although16
less severelyl[3]. 17
We now consider the convergence rates of the QC methods. The error bound us%j in
QC methods is a multiple of/g., so that the ratio of permitted errors to the number of,
quartets around an edgeris ,/q., wherem is a constant depending on the choice of QG
method. (Recall that we have = 1 for the global cleaning method and= 1/2 for the
local cleaning method.) Becausgg is £2(n?) andm a small constant, this ratio rapidly -
approaches 0 as the number of taxa increases. For example, consider an edge in a 50staxon
tree producing a 20:30 split. The number of quartets around this edge 66@82so that ,,
the bound for local cleaning is only 144; hypercleaning witk= 5 brings this bound up s
to 1440. Thus, for 50 taxa, even hypercleaning has an error tolerance on some edgegthat
is less than 2% of the total number of quartets for this edge. 27
The sensitivity of QC methods to errors suggests that, for layggC methods will be s
close in performance to the@* method. As soon as the number of errors around each edge
exceeds the cleaning threshold, a QC method behaves identically @*theethod. As 30
noted earlier, the convergence rate of iemethod is bounded from above by a functiors:
that grows exponentially im, suggesting that th@* method might be impractical. If 32
cleaning methods tend to perform only as well as@femethod for large:, then they will 33
not scale well. In Section 5.7, we present experimental results that support this observation.
Consider therefore a hypothetical cleaning method we will &églpoClean. This 35
method is guaranteed to recover an edgéthe number of quartet errors aroumdis 36
at most one third of the quartets around the edge—a much more generous bound tha#'that
used in local cleaning or than that used by its authors in hypercleaning. In the followihg
theorem, we establish a bound on the sequence length that suffiddgpClean to be 3
accurate on a random Jukes—Cantor tree. 40

We require the following lemma. 4

42
43
Lemma 3.1. The median diameter of all (2n — 5)!! unrooted, leaf-labeled, binary treeson 44
n leavesis © (/n). 45
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Proof. Penny and SteeP[] gave formulas for the distribution of interleaf distances in
such trees under the assumption that2dl — 5)!! such trees are equally likely, obtaining 2

(D) = 22"/<2n”) and o2(D) =4n —6— (D) — u*(D).

Since any nondegenerate distribution must have its median within o, 1 + o], our
conclusion follows. O

Theorem 3.2. Let f, g, ¢ > 0 bearbitrary constantswith f < g and denote by HC(S) the
tree reconstructed on S by the HypoClean method. Then thereisa constant ¢ such that, for
Jukes—Cantor model trees, (T, {A.}) WithO < f <. < g <ooforall e e E(T), and for a
set S of n sequences generated randomly on 7', we have PHHC(S) = T'] > 1 — ¢ whenever
the sequence length exceeds c logn - ¢?(v")  where the constant ¢ dependson g and «.

Proof. Theorem 3.1 shows that quartets of low diameter are more easily reconstruc%ed
from short sequences than are quartets of high diameter. Assume that we can correctly
reconstruct the “smallest-diameter” half of the quartets with high probability—we S|mp>/
guess the remaining quartets. We will then correctly reconstr(8b2the quartets with
high probability. What sequence length is required for this? Solving the smaller half-of
the quartets is no harder than solving the median-diameter quartets. By Theorem % 1,
this latter task is achieved with high probability when the sequence length is at Ié3st
O(clogn - e9€MdT)) ‘where mdT) is the median diameter df. By Lemma 3.1, this
guantity is® (4/n). Therefore, the sequence length that suffices to reconstruct the true free
with high probability using thédlypoClean method isO (clogn - ¢9¢vV1), o o
We have established the same form of (exponential) upper bound on the sequence- Iength
requirements of all cleaning methods. This upper bound suggests that cleaning metfiods
may not scale well—if the upper bound is approached by any cleaning method, that method
will require very long sequences to ensure high accuracy, yet such sequences may sizilply

not be available.
30

31
32
33

4. Experimental design

4.1. Overview 3
35

We used Jukes—Cantor model trees with varying numbers of taxa and rates of evoldtion
to generate a large number of synthetic datasets of varying lengths. For each dataset
generated, we computed the NJ and QP trees on the entire dataset and two sets of quirtets,
one based upon (local) ML, and one based upon (local) Ndyj. We then applied 39
various cleaning methods to each of the $2tg and Onj. We use the terms “local” and 40
“global” to distinguish between the local application of running a method on each setof
four leaves to determine the quartet topology versus the global application of runningsthe
method on the complete set of leaves. We compared quarté@gof of Onj, and of the 43
reconstructed trees, as well as the reconstructed trees themselves, against the true tree for
accuracy. 45
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4.2. Model trees 1
2

We randomly generated model tree topologies from the uniform distribution on bindry
leaf-labeled trees. For each edge of each tree topology, we generated a random number
(from the uniform distribution) between 1 and 1000 and used that number as the “length”
of the edge. We then scaled each such base model tree by a multiplicative factor, ranging
from 10~7 to 10~3. This process produces Jukes—Cantor treeswitralues ranging from
a minimum of 107 to a maximum of 1. We generated random DNA sequences for the
root and used the progra8eq- Gen [24] to evolve these sequences down the tree under
the Jukes—Cantor model of evolution, thus producing sets of sequences at the Ieave%0 our

. 1
synthetic datasets. b

13
4.3. Satistical considerations 14
15

Because the number of distinct unrooted, leaf-labeled trees leaves is(2n — 5)!! 16
and because our input space is further expanded by the choice of evolutionary ratestit is
not possible to take a fair sample of the entire input space. In order to obtain statisticglly
robust results, we followed the advice of McGeotHB][and Moret R1] and used a number 19
of runs, each composed of a numbertoifals (a trial is a single comparison), computed
the mean outcome for each run, and studied the mean and standard deviation over théruns
of these events. This approach is preferable to using the same total number of sampFés in
a single run, because each of the runs is an independent pseudorandom stream. Wit this
method, one can obtain estimates of the mean that are closely clustered around thé*rue

value, even if the pseudorandom generator is not perfect. 25
26

27
28
29
A critical parameter of our study, one that has not been explored in most prior studieg, is

the number of input taxa. Previous experimental studies have often been limited to a sgnall
number of taxa due to computational problems. However, to resolve phylogenetic teees
of interest to biologists, algorithms must scale reasonably, both in terms of topologigal
accuracy and running time, to problems of the size that biologists typically study (20—200
taxa), as well as those they would like to address (a few hundred to several thousand taxa).

Because of the dedicated use of two multiprocessor clusters, we were able to rurseour
test suite for 5, 10, 20, and 40 taxa (full quartet-based methods remain impractical, at lzast
in terms of experimental studies, for large numbers of taxa). Our tests included a selection
of eight expected evolutionary rates, fromx5L0~° to 5 x 10~ per tree edge. For each 3o
evolutionary rate and problem size, we generated a total of 100 topologies, grouped int® 10
runs of 10 trials. All tests were conducted for four sequence lengths: 500, 2000, 8000,4and
32,000 (we note that sequence lengths above 1000 are considered long and those @bove
5000 extremely long; thus our study explores longer sequence lengths than are usually
encountered in practice). In all, our study used 16,000 datasets and required many menths
of computation on the two clusters. 45

4.4. Parameter space
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4.5. Algorithms 1
2

We tested four different phylogenetic reconstruction methods: NJ, local quartet-cleading
for quartets based on (local) NJ, local quartet-cleaning for quartets based on (lotal)
ML, and QP. The code for QP iFREE- PUZZLE, available from their authors at ®
www.tree-puzzle.de; we modified it only by removing its interactive interface. All othér
code is our own. For quartet-cleaning, our accuracy measurements were made by couhting
the number of quartets that were in error around each edge. If the error was below? the
necessary threshold for the given method, then the edge was counted as being corfectly
reconstructed. For QP and NJ, we counted the number of true positives between thé'true
tree and the tree method constructed. We ran all four algorithms sequentially on a sitigle
set of sequences for one trial, stored all data that was generated, then proceeded to th€ next

trial, so that each of the algorithms was run on exactly the same data. 13
14

15
16

4.6. Measurements

Our focus in this study is the accuracy of solutions generated by the various free
reconstruction methods. Because most methods are time-consuming, the running tlrir?e is
briefly addressed; our aim was not to fine-tune implementations, but simply to Obtalzl’(l) a
rough idea of which methods can be run in a reasonable amount of time on a conventlonal
machine for realistic datasets. We compare running times as gathered on our platforms all
of which are 450 MHz Pentium Il machines running Linux.

To assess topological accuracy, we measured the number of true positives (edges of
the true tree that appear in the reconstructed tree). For cleaning methods, we measured
these values before and after cleaning. For each run of 10 trials, we retained only the mean

values. Our results are composed of the means for each set of 10 runs. .

28
. 29
5. Experimental results 30

31
Except for runs on 5 taxa, the standard deviations we observed remained consistgpt at

1-2% of the mean; with 5 taxa, standard deviations were (as expected) larger, reaching
10-15% of the mean. In all of our figures, QCNJ and QCML denote quartet-cleaningof
quartets derived by local NJ and by local ML, respectively. 35
36
5.1. Estimating quartets 37
38
The technique used to construct the @eaf quartets provided to quartet-based methods
can have a significant impact on the performance of these methods. The phylogenetics
community has generally expected that (local) ML would produce more accurate quarets
than (local) NJ. We therefore compared local ML and local NJ in terms of the quartet sets,
OngandQw, that they computed. As a reference point, we also examined how global4slJ
performed in terms of the trees it induced on each fourtuple of leaves from the globakNJ
tree. Figure 6 shows the proportion of true positives in each of the sets of quartets. 45
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Fig. 6. Percentages of quartets computed by local ML, local NJ @d induced by global NJ that agree with the'true
tree for various numbers of taxa and a sequence length of 500.Adeeders to the expected number of events19
on a random edge in the model tree. 20

21

The relative performance of local NJ and local ML (NJ and ML applied to eaéh
quadruple of leaves to estimate the quartets) is interesting. At the highest rates of evolation
(see Fig. 6(a)), except for 5-taxon trees, local NJ slightly outperforms local ML, but tkis
gap increases with increasing numbers of taxa. At the second highest rate of evolution2ésee
Fig. 6(b)), they are indistinguishable up to 40 taxa. However, at the lowest rate of evolugon
(see Fig. 6(c)), local ML slightly outperforms local NJ, although the gap decreases with
increasing numbers of taxa. Overall, while the choice of localvslJdocal ML does 28
influence the results, our data do not allow us to establish a preference for one oversthe
other: neither ML nor NJ dominates the other in terms of accuracy, but each has a range in
which it yields slightly better quartet estimations. 31

A comparison between these sets of quartets and the quartets obtained by using giobal
NJ (i.e., the quartets induced by the NJ tree) is also interesting. At the lowest ratésof
evolution (Fig. 6(c)), except for 5-taxon trees, local ML is superior to global NJ ard
both are superior to local NJ; however, the gap between the three ways of compuing
guartet trees narrows with increasing number of taxa. At the middle rate (Fig. 6(b)), #he
methods are indistinguishable (up to 40 taxa), while at the highest rate (Fig. 6(a)), glébal
NJ is clearly superior, and the gap between global NJ as a quartet method and thesgwo
other quartet methods increases with increasing numbers of taxa. Thus, for high rates of
evolution (and potentially for all large enough trees), the best quartet estimator may simply
be global NJ—i.e., compute the NJ tree and use its quartets. 41

In terms of the quality of the quartets obtained, the best accuracy was obtained atzhe
second highest rate of evolution. At the lowest rate of evolution, only 1 in 2000 sites
changes on average around each edge, so that, for a sequence length of 500, roughly25%
of the edges have changes on them. Thus, although it may be possible to guess arvedge
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accurately, the best possible reconstruction at the lowest rate will only yield about 76%
of the edges—approximately what the best performing method (local NJ) obtains. Atzhe
highest rate the accuracy starts to decrease with more than 10 taxa. A decrease in aceuracy
with increasing numbers of taxa for a fixed sequence length is predicted by theory (if
only for information-theoretic reasons); hence, even for the lower rates of evolution, assthe
number of taxa increases, the accuracy of the quartet estimations should decrease. 6

7

5.2. Two measures of accuracy: quartets and edges 8
9

Although the standard measure of accuracy is the number of true edges inithe
reconstructed tree, the percentage of correctly inferred quartets has also been used‘as a
surrogate 4]. However, correlation between correct quartets and edges of the true free
returned by a method has not been shown. We address this issue by examining®the
performance of QP and global NJ with respect to both criteria. Figures 7 and 8 maké it
clear that edge accuracy is a more demanding criterion than quartet accuracy, and skould
therefore be used to assess performance of phylogenetic reconstruction methods.Both
global NJ and QP can return trees with 80% of quartets correct, but only 20% of eddes
correct. Worse yet, both methods, except when the percentage of correct quartets is tlose

to 100%, can return fewer than 80% of the true tree edges (in the ca3® ofome such °
20
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30

Fig. 7. Percent of true tree edges recovered by global NJ for vakipas a function of the percentage of correct 81

induced quartets for 40 taxa and two sequence lengths. 32
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43

Fig. 8. Percent of true tree edges recovered by QP for vakipas a function of the percentage of correct induced?4
quartets for 40 taxa and two sequence lengths. 45
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trees had only 60% of the true tree edges). Because failure to obtain at least 90 or 9596 of

the edges can be unacceptable to systematists, quartet-based measures of accuracyzare not
acceptable surrogates for measures of accuracy based on true tree edges. 3
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5.3. Sensitivity to input quality

that they return.

5.4. Scaling of methods with increasing numbers of taxa

Fig. 9. Percentage of correct input NJ quartetsrue tree edges fop*NJ and QCNJ for sequence length fixed
at 2000, with each graph showing runs for all numbers of taxa and all average edge lengths.
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Methods that operate by estimating quartets and then combining them into a sifgle
tree can be greatly affected by the quality of the input quartets. Figure 9 shows how&QC
methods respond to input quality. QC methods, as well as the other quartet methods we
study, require a larger fraction of correct input quartets than the fraction of true tree edges

11
12
13
14

Theory predicts that the accuracy of methods will eventually degrade as the nuniber
of taxa increases while sequence length and average edge length (the expected numi§er of
changes for a random site on each edge) are held fixed. Figure 10 shows the edge acéaracy
achieved by all six methods as a function of the number of taxa for a sequence length o500
and for three different average edge lengths. Figure 11 shows the same set of resultstfor a
sequence length of 2000. All methods decrease in accuracy as the number of taxa incréases,

21
22
23
24
25
26
27
28
29
30
31
32
33
34
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Fig. 10. Percentage of edges correstnumber of taxa for sequences of length 500 and varigus

44
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Fig. 11. Percentage of edges correztnumber of taxa for sequences of length 2000 and varigus
12

even though both NJ and QP show an initial increase. QC provides a distinct improverﬁént
over theQ* method, whether the quartets are computed using local ML or local NJ. QCN|L
and QCNJ are very close in performance, although QCNJ slightly outperforms QCML;
similarly 0*NJ slightly outperformgD*ML. Of the five quartet methods, QP is the best,
throughout the range of parameters studied, but global NJ completely dominates it (and,the

other quartet methods we study). 10

20
5.5. A comparison between O* and QC 1

22

QC can be seen as an improvement to fiiemethod, becaus@* does not permit 53

errors around any reconstructed edges, while QC reconstructs every edge around which
there is a bounded number of errors. In Figs. 10 and 11, we showed performancesfor
different rates of evolution as the number of taxa varies, which gives evidence that QC
methods return additional true edges under many conditions. In Fig. 12, we explore;the
relative improvement in edge recovery obtained on local NJ or local ML quartets by using
a QC method instead of th@* method. Curiously, the improvement obtained in termsg
of quartet accuracy is less satisfactory, never averaging more than 2% for low rateg of
evolution and for large number of taxa at high rates of evolution. QC provides the largest
improvement when almost all input quartets are correct; indeed, this is what the theery
about QC suggests. In particular, the most improvement occurs at a high rate of evolutiga—
not our highest rate, but our second highest rate, when the error rate in input quartets isalso
lowest. 35

36
5.6. The effects of sequence length 37

38

Although sequence length and rate of evolution have a strong effect on the absclute

performance of phylogenetic methods, the relative ordering of NJ, QP, and QCNJ is almost
constant throughout our experiments: NJ is the best followed by QP, and then by QGNJ.
Figure 13 presents data for 40 taxa at three different rates of evolution, for sequenace
lengths varying from 500 (a typical length) up to 32,000 (a quite large length). Note that
all methods increase in accuracy with increasing sequence length (as expected sinee all
methods are statistically consistent under the Jukes—Cantor model). 45
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Fig. 12. QCvs. Q*: cleaning-induced improvement for NJ and ML in the percentage of tree edges that agree with
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5.7. Experimental bounds on sequence length

33
Theorem 3.1 provides only an upper bound on the sequence length sufficient, for
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24

27
28
29
30
31
32

accurate reconstruction by th@* method; no theoretical lower bound is known for the,

necessary sequence length. Using the same experimental set-up as before, we megsured
the sequence length required to recover accurately all of the edges at least 90% of the;jime

for global and local quartet cleaning (with neighbor-joining determining the topology of the

guartets). We generated a tree (under the distributions described above), evolved sequgnces
down the tree of length 500, and used those sets of sequences as inputs to the methagls. If
a method fails to recover all of the edges of 9 out of 10 of the trees, the sequence length is
increased by 500, and we repeat the reconstruction. We stop this process when a method
has been successful, or the sequence length reaches 32,000 (a very large length). We note
that, at all evolutionary rates, NJ outperforms QCNJ in the sequence lengths needed to

reconstruct the edges 90% of the time (see Fig. 14).

45
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35

evolution (left), QCNJ and NJ perform comparably. At higher rates of evolution (right), NJ consistently requises
shorter sequences to reconstruct the true tree.

6. Discussion

6.1. Quality of quartets

38
39
40
41
42
43

The technique used to construct the getof input quartets provided to quartet- 44

based methods can have a significant impact on the performance of these methodsisThe
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phylogenetics community has generally expected that local ML would produce more
accurate quartets than other local quartet inference methods. However, in our stutlies,
neither local ML nor local NJ dominates the other as a quartet estimator; instead, lacal
ML outperforms local NJ only for the lowest rates of evolution, whereas local NJ clea#ly
outperforms local ML for higher rates. Because our observations differ from the received
wisdom in the field, we offer the following possible explanation. In earlier studigl [ ¢
the performance of local ML and local NJ as quartet estimators was studied by explicitly
simulating evolution on 4-taxon trees. Here, we have simulated evolution on larger trees
and then looked at the quartets defined by these larger trees. Good performance on gueartets
drawn from a large tree is not the same as good performance on quartets drawn from awery
different sample space. While it is possible to sample 4-taxon model trees so as to produce
the same kind of quartets we gave as input to our methods, the studieg did not use 12
such a sampling strategy. 13
14
6.2. Robustness of quartet methodsto quartet errors 15
16
How robust are quartet-based methods with respect to errap®imhe 9* method is 17
the least robust. QC methods provide some error tolerance, sufficient to recover additienal
true edges even under high rates of evolution and for moderate numbers of taxa. However,
both of these methods are inferior to QP in terms of error tolerance, even though QP @also
fails to get a good estimation of the true tree when the input set of quartets has over 5% of
errors (forn = 40). Finally, in our experiments, NJ was always at least as accurate as®@P
and nearly always much better. Thus, the reason quartet methods fail to recover good#ees
is not that the input distance matrix is too noisy for any method to recover a good estinrate
of the true tree. 25
26
6.3. Running times 27
28
NJ was clearly the fastest method tested. QC and QP methods must compute®all 29
quartets and hence must tak&n?) time. ML-based methods also construct quartet®
through expensive estimation methods, the running time of which increases sharply #ith
increasing sequence length. Thus QCML and QP were by far the slowest of the methods
tested, slow enough that running them on more than a hundred taxa appears infeasikde at
present. With default settings, QP takes more than 200 days of computation to analyzesten
runs of ten trials each for a single set of parameters on 80 taxa with a sequence lesagth
of 500. In contrast, NJ dispatches the same analysis in about 30 minutes. 36
37
6.4. Comparison between methods 38
39
Our experiments clearly establish a linear order of accuracy for the methods we stuetied
(except under very low rates of evolution): NJ (applied globally) is the preferred methed,
with QP second, the QC methods significantly behind QP, an@thmethods somewhat 42
behind the QC methods. The particular technique used to infer quartets also has an
influence on the quality of the trees obtained by the quartet methods, with QCNJ often
better than QCML an@*NJ often better tha®*ML (at least for large enough trees with 45
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moderate to high rates of evolution). Furthermore, global NJ requires significantly shorter
sequences to reconstruct the trees than the quartet methods we studied. 2
3
4

7. Conclusionsand open questions 5
6

Why does global NJ outperform the quartet methods throughout the parameter space we
examined (except on some 5-taxon trees)? As Fig. 14 shows, the actual convergencesrates
for both global NJ and QCNJ appear much better than exponential, suggesting thae our
upper bounds on the convergence rate are loose for both cleaning methods and NJ. Yet the
same figure also shows clearly that the convergence rate of NJ is much better than that of
QCNJ. The sharp degradation in accuracy that we see in cleaning methods with increasing
numbers of taxa suggests that their convergence rate, while perhaps subexponential, is
asymptotically poor. In contrast, global NJ (and, to a lesser extent, QP) degrades far miore
gracefully, and only when the rate of evolution is close to saturation. The good performauace
of QP as a quartet method does not seem to result from its use of ML-based quantets,
since by that reasoning QCML should demonstrate a comparable improvement over QCNJ
(which it does not). One reason for the better behavior of QP could be the manner in wkdch
it combines quartets. We suspect that the issue is partly th&@ttend QC methods place 19
too stringent a requirement on the edges; by comparison the QP method places no abgolute
restriction. Thus, we suspect that the ability of global NJ and QP to handle noisy input
data lies in the specific techniques each uses to construct trees and the fact that neither
places strict bounds on errors. This in itself may help explain why QP outperforms the
other quartet methods we studied, but it does not explain why global NJ outperforms®@P.
We conjecture that methods which operate by combining quartets do not make use ¢ all
available information: we suggest that quartet-based methods may be impeded by their
very structure, in having to decide the tree based on quadruples of taxa, without reference
to the other taxa. 28

These observations suggest that quartet methods, if they are to be competitive 2aith
global NJ, need to be flexible in combining quartets into a single tree on the full set
of taxa. Because of the lack of correlation between quartet accuracy and edge accuacy,
seeking to solve the quartet compatibility problem may not produce the best trees eitaer.
Therefore, quartet methods with good performance (reaching or improving upon global
NJ’s performance) will require both more flexibility and greater sophistication than tHe
current quartet methods. 35

Another experimental study of quartet-based meth@8sdompared QP with variants 36
of global NJ, ML, and maximum parsimony, on 12-taxon trees. They noted poor per-
formance by QP with respect to the other methods studied, which they attribute to peor
weighting of the quartets (pointing out how difficult it is to decide how much weight e?
confidence to give each quartet). This study, along with our results, suggest that s&@me
flexibility in weighting quartets could improve the accuracy of quartet-based methods.
We conclude with the following comments about algorithm design and performanze
studies in phylogenetics. From the perspective of experimental performance stusies
and algorithm design, global NJ should be regarded as a universal lowest common
denominator in phylogeny reconstruction algorithms. Its speed makes it easy to 4ase
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under all circumstances; its topological accuracy makes it an acceptable starting point for
tree reconstruction in biological practice. We suggest that a proposed method should be
compared with NJ and abandoned if it does not offer a demonstrable advantage over NJ
for substantial subproblem families. 4
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