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ABSTRACT
Absolute fast converging phylogenetic reconstruction
methods are provably guaranteed to recover the true
tree with high probability from sequences that grow only
polynomially in the number of leaves, once the edge
lengths are bounded arbitrarily from above and below.
Only a few methods have been determined to be absolute
fast converging; these have all been developed in just the
last few years, and most are polynomial time. In this paper,
we compare pre-existing fast converging methods as well
as some new polynomial time methods that we have
developed. Our study, based upon simulating evolution
under a wide range of model conditions, establishes that
our new methods outperform both neighbor joining and
the previous fast converging methods, returning very
accurate large trees, when these other methods do poorly.
Contact: usman@cs.utexas.edu

INTRODUCTION
Performance studies of phylogenetic methods focus upon
how accurately methods can reconstruct the unrooted un-
derlying leaf-labeled tree (called the “topology”) under
various model conditions. Recent research (Erdos et al.,
1997, 1999; Huson et al., 1999a; Warnow et al., 2001)
has developed a new class of phylogenetic methods, called
fast converging methods, which provably recover the true
tree topology with high probability given only polynomial
length sequences. Earlier experimental studies have shown
that some of these methods can recover significantly more
accurate trees than standard methods, such as neighbor
joining (NJ) (Sautou and Nei, 1987)– perhaps the most
popular polynomial time method in phylogeny reconstruc-
tion. Since some of these fast converging methods are also
polynomial time, they potentially provide a powerful al-
ternative to NJ.

Our first simulation study confirms the observations that
current fast converging methods (Csűrös, 2001; Huson
et al., 1999a) can outperform NJ; however, our study
also suggests they outperform NJ only for very large and
evolutionarily divergent datasets. Under other conditions,

the fast converging methods are much less accurate than
NJ. With this in mind, we designed additional methods,
some of which are provably fast converging. The best
of these new methods are significantly more accurate
than the previous fast converging methods; not only do
they perform as well as NJ in our experiments, but they
outperform NJ on smaller and less evolutionarily divergent
datasets. Many of our new methods are polynomial time,
and while slower than the NJ method, they still complete
within a few minutes, even for datasets with hundreds of
taxa.

The rest of the paper is organized as follows. First, we
provide a review of the terminology that is used in the
paper and a discussion of the theoretical results about
fast-convergence. Second, we outline the experimental
methodology. Third, we present our initial simulation
study comparing two fast converging methods to NJ.
Fourth, we discuss the development and performance
analysis of our new methods. Finally, we address the
performance of the methods on large trees and conclude
with a discussion of the consequences of this study and
suggestions for future research. In particular, we discuss
how some of these methods can be used to provide
excellent approximations to the maximum likelihood (or
maximum parsimony) problems.

TERMINOLOGY & REVIEW
Models
The two models we use for the simulation study are the
Jukes-Cantor model (JC) and Kimura 2-Parameter (K2P)
model with a gamma distribution (K2P+Gamma). The JC
and the K2P model (without the gamma distribution) are
special cases of the General Markov (GM) model (Steel,
1994b).

The Jukes-Cantor (JC) model (Jukes and Cantor, 1969)
is the simplest Markov model of biomolecular sequence
evolution. In that model, a DNA sequence (a string over
{A, C, T, G}) at the root evolves down a rooted binary tree
T . The assumptions of the model are: (1) the sites (i.e., the
positions within the sequences) evolve independently and
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identically, (2) if a site changes state it changes with equal
probability to each of the remaining states, and (3) the
number of changes of each site on an edge e is a Poisson
random variable with expectation λ(e) (this is also called
the “length” of the edge e). A JC tree is completely defined
by the pair (T, {λ(e)}).

The Kimura 2-Parameter (K2P) model (Kimura, 1980)
is a generalization of the JC model. As with JC, each site
evolves down the tree under the Markov assumption, but
there are two different types of nucleotide substitutions:
transitions (mutations that change A to G or vice-versa,
and C to T or vice-versa) and transversions (all other mu-
tations). The probability of a given nucleotide substitution
depends on the edge and upon the type of substitution. A
K2P tree is defined by the triplet (T, {λ(e)}, ts/tv), where
ts/tv is the transition/transversion ratio; in our experi-
ments, we fix this ratio to 2 (a standard setting).

These models describe how a single site (i.e. a position
within the sequence at the root) evolves down the tree,
and it is assumed that the sites evolve identically and
independently. However, we can also assume that the sites
have different rates of evolution, and that these rates are
drawn from a known distribution. One popular assumption
is that the rates are drawn from a gamma distribution with
shape parameter α. We use α = 1 for our experiments
under K2P+Gamma. With these assumptions, we can
specify a K2P+Gamma tree just by the pair (T, {λ(e)}).

Measures of accuracy
There are many ways of measuring error between trees,
but when the trees are all constrained to be binary, the
Robinson-Foulds (RF) measure (Robinson and Foulds,
1981) is the preferred technique. Each edge in a tree
induces a bipartition on the set of leaves of the tree. The
RF error is the proportion of bipartitions that are unique to
each tree (i.e., the RF score is the normalized symmetric
difference of the trees). When this value is 0, the topology
of the trees are identical.

Statistical performance issues
We say that a phylogeny reconstruction method M is
statistically consistent under a model of evolution if, for
every model tree (T, {λ(e)}) and every ε > 0, there is
a sequence length k such that M recovers the true tree
with probability at least 1 − ε, when the method is given
sequences of length at least k generated on the tree T .
Real data are of limited length. Therefore, the length k
of the sequences affects the performance of the method M
significantly. The convergence rate of a method M is the
rate at which it converges to 100% accuracy as a function
of the sequence length.

Absolute fast convergence
The largest and smallest edge-lengths clearly affect the
sequence length needed by any method. So, we will
examine the convergence rate issue by fixing arbitrarily
the largest and smallest “edge-lengths” (see above). Once
these bounds are fixed, we can consider the sequence
length a method needs in order to recover the tree
topology exactly with high probability. This sequence
length “requirement” clearly grows with the number of
leaves in the tree. Intuitively, we will say that a method
is “fast-converging” if the sequence length that suffices
in order to obtain the true tree with high probability is
bounded from above by a polynomial in n. We now define
this concept formally.

Since we examine several different models of evolution
(e.g. JC and K2P+Gamma), we will let M denote the
assumed model of evolution. We parameterize this model
as follows:

DEFINITION 1. Let f, g ≥ 0. Define M f,g =
{(T, {λ(e)}) : ∀e ∈ E(T ), f ≤ λ(e) ≤ g}.
We now define absolute fast convergence:

DEFINITION 2. A phylogenetic reconstruction method

 is (absolute) fast-converging (afc) for the model
M if, for all positive f, g, ε, there is a polynomial p
such that, for all (T, {λ(e)}) ∈ M f,g, on a set S of n
sequences of length at least p(n) generated on T , we have
Pr [
(S) = T ] > 1 − ε.

Previous fast converging methods
Several afc methods have been developed in the last years
(see (Erdos et al., 1997, 1999; Huson et al., 1999a; Csűrös,
2001; Warnow et al., 2001)). Of these, HGT-FP (Csűrös,
2001) and DCM*-NJ (Warnow et al., 2001) are the most
promising. We now briefly describe these methods.
HGT+FP: The Harmonic Greedy Triplets + Four Point
Condition is a polynomial method which builds a tree by
sequential insertion of taxa, using a quartet-based metric.
DCM*-NJ: DCM*-NJ is one of the “Disk-Covering
Methods” (see also (Huson et al., 1999a,b; Warnow et al.,
2001)). DCM*-NJ is not polynomial time, since it involves
solving an NP-hard problem, although polynomial time
versions of DCM*-NJ in which the NP-hard optimization
problem is approximated by a greedy heuristic perform
well in practice (Huson et al., 1999a). We build upon
the design strategy of DCM*-NJ in order to develop our
new afc methods (described below). Hence we will also
describe briefly the two-phase structure of DCM*-NJ.

The input to DCM*-NJ is an n×n matrix di j of distances
between each pair of sequences in the input.
Phase 1: For each q ∈ {di j }, compute a binary tree Tq .
Let T = {Tq : q ∈ {di j }}. (In order to ensure that each
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Tq is binary, we use heuristics for refining incompletely
resolved trees. We note that the specific heuristic we used
in Huson et al. (1999b) differs from the one we use in the
new afc methods in this paper.)
Phase 2: Select the best tree from T .

The method used in the second phase of DCM*-NJ is
the Short Quartet Support (SQS) method, which we now
define. Let T be a tree on a set of taxa S, and let Q(T )

denote the set of trees induced by T on each set of four
leaves; hence a quartet tree t ∈ Q(T ) if and only if the
subtree of T induced by the taxa of t equals t .

DEFINITION 3. Let d be a distance matrix on a set
S of taxa. For a given quartet q on taxa from S, define
diamd(q) = max{di, j | {i, j } ⊂ q}. In other words,
diamd(q) is the maximum distance between the taxa
of q. For Q, a fixed set of quartets, we can define the set
Qw = {q ∈ Q : diamd(q) = w}.

DEFINITION 4. Let T be a fixed tree leaf-labeled by
a set S of taxa, Q a fixed set of quartets on S, and d
the distance matrix on S. The short quartet support of T
with respect to Q, denoted sqs(T, Q), is max{w : ∀ j ≤
w, Q j ⊆ Q(T )}.

We now present a high-level version of SQS:

PROCEDURE SQS(T , S)

• For each set of four taxa from S, compute
the NJ quartet q; let Q be the set of all such
quartets.

• Return Ti ∈ T such that sqs(Ti ,Q) is
maximum; if more than one such tree exists,
return the one with the smallest index i .

Note that the short quartet support of a tree, as defined,
is a fairly crude estimate of the quality of the tree;
surprisingly, it is sufficient to ensure that DCM*-NJ is
absolute fast converging. In fact, if we had picked any
tree with maximum support, the result would have been
a provably absolute fast converging method.

EXPERIMENTAL DESIGN
Simulation study
Simulation studies are the standard technique used in
phylogenetic performance studies (see, for example,
(Huelsenbeck and Hillis, 1993; Huelsenbeck, 1995; Kuh-
ner and Felsenstein, 1994)). In a simulation study, a DNA
sequence at the root of a model tree (i.e. tree topology
with branch lengths) is evolved down the tree under some
assumed stochastic model of evolution, such as the K2P
or JC models. This process generates a set of sequences
at the leaves of the tree. The sequences are then given
to the phylogenetic reconstruction methods, with each

method producing a tree for the set of sequences. These
reconstructed trees are then compared against the model
tree for topological accuracy. The process is repeated
many times in order to obtain a statistically significant test
of the performance of the methods under these conditions.

In our study, we have used model trees based upon
biological datasets as well as randomly generated model
trees. We have also explored performance under two
different models: the JC model, and the K2P+Gamma
model. Finally, unlike most previous studies ((Bininda-
Edmonds et al., 2001; Csűrös, 2001; Hillis, 1996; Huson
et al., 1999a) are some of the few exceptions), we have
examined performance for a wide range of numbers of
taxa, ranging from moderately large (50 taxon) trees to
very large (1600 taxon) trees. Due to space constraints,
we will only present a subset of our data, though we will
discuss the variations we see in the results as well.

In order to obtain statistically robust results, we fol-
lowed the advice of McGeoch (McGeoch, 1992) and
Moret (Moret, 2001) and used a number of runs, each
composed of a number of trials (a trial is a single com-
parison), computed the mean outcome for each run, and
studied the mean and standard deviation over the runs
of these events. This approach is preferable to using the
same total number of samples in a single run, because
each of the runs is an independent pseudorandom stream.
With this method, one can obtain estimates of the mean
that are closely clustered around the true value, even if the
pseudorandom generator is not perfect.

The standard deviations of the mean outcomes in our
studies is very low, less than 0.02. This is only two percent,
since the possible values range from 0 to 1. We graph the
average of the mean outcomes for the runs, but omit the
standard deviation from the figures.

Model trees
We examined two types of model trees. The first type is
random model trees, and the second type is biologically
based model trees. Both are used in the phylogenetic
performance literature.
Random Model Trees: For each number n of taxa,
we randomly generated model tree topologies from the
uniform distribution on binary n leaf trees (where the
leaves are labeled by 1...n). For each edge of each
tree topology, we generated a random number (from the
uniform distribution) between 1 and 100, and used that
number as λ(e), the expected number of changes on a
random site. We then scaled each such “base” model tree
by values between 0.01 and 0.0001. This process produces
trees with average branch lengths of 0.5 and 0.005. Due
to space constraints we will only show a subset of these
experiments.
Biologically based Model Trees: A biologically based
model tree is a rooted tree with branch lengths that are

S192



Fast Converging Methods

Fig. 1. The rbcL 500-taxon tree obtained by parsimony analysis by
Rice et al. (Rice et al., 1997) of a collection of 500 rbcL gene (DNA)
sequences.

Fig. 2. The Archaea 107-taxon tree is from the Ribosomal Database
Project (Maidak et al., 2000) and was constructed using Weighbor
(Bruno et al., 2000).

inferred on the basis of a phylogenetic analysis of a real
dataset. We have used several biologically based model
trees in our studies. In each case, we used the model tree
as a “base”, and scaled the edge lengths of the tree up
and down to produce a family of model trees, in order to
test the performance of different methods under various
conditions. Due to space limitations, we report on the
performance for scalings selected so that NJ has only 20%
error on sequences of length 1000. The trees we studied
are:

500 rbcL tree: Our first biological model tree (see Figure
1) is based upon a parsimony analysis of a collection of
500 rbcL gene (DNA) sequences (the parsimony analysis
was performed by Rice et al. (Rice et al., 1997)). This is
the same model tree used by Csűrös in (Csűrös, 2001).
In addition to the scaling factor described above, we also
used the setting from (Csűrös, 2001).

107 Archaea tree: The second biological model tree is
the Archaea 107 taxon tree (see Figure 2) obtained from
the Ribosomal Database Project (Maidak et al., 2000). It
was constructed using Weighbor (Bruno et al., 2000) from
RNA sequences. This tree proved more challenging than
the larger rbcL tree for many of the methods studied (see
the New Methods section and the Very Large Datasets
section).

85 Crenarch tree: We also studied performance on the
Crenarch 85 taxon tree from (Maidak et al., 2000),
constructed using Weighbor (Bruno et al., 2000) from
RNA sequences. The performance on this tree echoed that
on the Archaea tree, and we omit the details of those
experiments (see the New Methods section for further
discussion).

140 Eukaryote tree: This 140 taxon tree is a subtree
of the Eukaryote 2055 taxon tree from (Maidak et al.,
2000), constructed using maximum likelihood from RNA
sequences. As with the 85 Crenarch tree, the performance
on this tree echoed that on the Archaea tree, and we omit
the details of those experiments (see the New Methods
section for further discussion).

Experimental platform
Machines: The experiments were run over a period of
approximately three months on approximately 280 differ-
ent processors running the Debian Linux operating sys-
tem. These included two clusters: the phylofarm cluster of
9 dual-processor machines, which are dedicated to the de-
sign and study of algorithms for phylogenetic reconstruc-
tion, and the SCOUT cluster: a cluster of 132 processors
(16 4-way IBM Netfinity servers with 533-MHz Xeon pro-
cessors and 1GB memory/box, 32 2-way IBM Netfinity
servers with 733-MHz Pentium III processors and 512MB
memory/box, 2 2-processor 733-MHz Netfinity boxes act-
ing as file and checkpoint servers). The SCOUT cluster
is funded by NSF EIA-9985991 and shared among five
researchers. In addition, we also had nighttime use of ap-
proximately 150 Pentium III processors located in public
undergraduate laboratories.

Software: We used the program Seq-Gen (Rambaut and
Grassly, 1997) to randomly generate a DNA sequence for
the root and evolve it through the tree under the JC model
of evolution and the K2P + Gamma model. We calculate
evolutionary distances appropriately for each model (see
(Li, 1997)).

The software for DCM-NJ was written by Daniel
Huson. To calculate the maximum likelihood scores of
the trees we used PAUP* 4.0 (Swofford, 1996). To
visualize the trees, we used the splitstree package
(Huson, 1998). For job management across the cluster
and public laboratory machines, we used the Condor

S193



L. Nakhleh et al.

software package (Condor, 2001). We generated the rest
of this software (a combination of C++ programs and Perl
scripts) explicitly for these experiments. The software for
HGT+FP was provided by Csűrös.

COMPARING AFC METHODS TO NJ
Our first study focuses on the two most promising absolute
fast converging methods under these two models of evo-
lution. JC was chosen since the original studies (Csűrös,
2001) showing the HGT+FP method outperformed NJ on
large trees with high evolution were done under this model
of evolution. K2P+Gamma was chosen due to its popular-
ity in many recent phylogenetic studies.

Comparison to NJ: We compared DCM*-NJ and
HGT+FP to the popular neighbor joining (NJ) method of
Saitou and Nei (Sautou and Nei, 1987). NJ is statistically
consistent under the General Markov model of evolu-
tion. We do not know if NJ is absolute fast converging
under these models (the only proven upper bound for its
convergence rate is exponential (Atteson, 1999)).

Experimental Procedure: We compared these methods
on a large number of model trees, both biological and
random. We generated 50 sets of sequences of length
8000 under JC and then ran experiments on the first 200,
600, 1000, 2000, 4000 and 8000 sites of the same set of
sequences.

Results & Discussion: The relative performance be-
tween the three methods is quite clear. We show only our
results for the rbcL 500 tree experiments, due to space
limitations.

On the rbcL 500 tree under JC (see Figure 3), our
results confirm Csűrös’ results (Csűrös, 2001) on the
same tree, and show that HGT+FP can outperform NJ on
this tree given long enough sequences, but is worse than
NJ on shorter sequences. DCM*-NJ and HGT+FP both
outperform NJ at sequence lengths above 4000, but NJ is
better than DCM*-NJ and HGT+FP for sequence lengths
below 4000. A comparison between DCM*-NJ and
HGT+FP shows that DCM*-NJ has better performance
than HGT+FP at all sequence lengths.

On the other model trees, the comparison was similar:
HGT+FP was less accurate than DCM*-NJ, and the rela-
tive performance between NJ and these methods depended
upon the number of taxa and the rate of evolution: as these
parameters increased, NJ’s performance decreased until
the other methods were better than it (see the Very Large
Datasets section for more details).

Summary: We conclude that these afc methods,
HGT+FP and DCM*-NJ, can outperform NJ, but not
consistently; they are often worse than NJ. In general it
seems that they obtain improved performance only under

Fig. 3. DCM*-NJ vs. NJ vs. HGT+FP on the rbcL 500-taxon tree,
under the JC model. Average branch length is 0.264.

restrictive conditions. In particular, even for those trees
(mostly large and evolutionarily divergent trees) for which
they do offer an advantage, the advantage seems to be
limited to very long sequences.

NEW METHODS
In this section we describe our new phylogeny reconstruc-
tion methods. Our objective here is three-fold: first, the
methods should be polynomial time and preferably as fast
as NJ. In all cases, the methods must be fast enough that
speed is not a consideration. Second, the methods should
outperform both NJ and the previous fast-converging
methods (with respect to topological accuracy) in an
interesting portion of the parameter space. (For our
concerns, we would like the new methods to outperform
NJ and the previous fast converging methods on trees with
just a few hundred taxa.) And lastly, the methods should
not be worse than NJ or the previous fast-converging
methods (with respect to topological accuracy) except in
uninteresting portions of the parameter space (where NJ
itself gets very poor reconstructions, such as missing 50%
of the edges). Our earlier studies, including the ones we
presented above, show that all the earlier afc methods
(e.g. DCM*-NJ and HGT+FP) fail the last criterion.

Our new methods differ from DCM*-NJ in two ways.
First, we obtain binary trees in Phase 1 in the following
way. Given an unresolved tree, we assign DNA sequences
to internal nodes using the Fitch maximum parsimony
algorithm. Then we apply NJ to the neighbors around each
unresolved node in order to resolve the node. Secondly,
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and more importantly, we modify the second phase, in
which we select the best tree from the set T of trees {Tq}
(one for each q ∈ {di j }.

The importance of using a good technique to select a tree
from a set of trees has been observed by others as well: the
original HGT method also was based upon a two-phase
structure in which a collection of trees is constructed, and
then a best tree selected from the set. In (Csűrös and
Kao, 1999), they used the Minimum Evolution Criterion
to select the best tree from the set, and observed that
it produced significantly better trees than their earlier
techniques. In this section, we define three additional
selection techniques:

• Threshold Support (TS): We define the threshold
support of a tree T , denoted by ts(T ), as follows:

ts(T ) = |{w ∈ {di j } : Qw ⊆ Q(T )}|.
• Maximum Parsimony (MP). The maximum parsi-

mony score of a tree is obtained easily in polynomial
time, see (Fitch, 1971).

• Maximum Likelihood (ML):. The Maximum Likeli-
hood score of a tree is not easily computed, although
heuristics exist (Steel, 1994a). We use the reasonably
efficient heuristics for ML in PAUP* (Swofford, 1996).

See (Hillis et al., 1996) for a discussion of both maximum
parsimony and maximum likelihood as selection criteria.
Each of these techniques thus produces a different two-
phase phylogenetic method, which we call DCM-NJ+SQS
(this is DCM*-NJ), DCM-NJ+TS, DCM-NJ+MP, and
DCM-NJ+ML, with the obvious meaning. Of these four
phylogenetic methods, only DCM-NJ+SQS and DCM-
NJ+TS are provably afc. While DCM-NJ+ML is also
statistically consistent, we do not have any bound on its
convergence rate; DCM-NJ+MP is not even statistically
consistent under the simplest models (Felsenstein, 1978).

Comparing DCM-NJ Variants
Model trees and parameters: We studied the methods
under all the biological trees and several random trees of
up to 200 taxa. Due to space limitations, we report only
on the performance on two biologically based trees: the
107 Archaea tree, and the 500 rbcL tree. The performance
on the other trees was similar. We scaled the edge lengths
of each tree up to create challenging conditions, with the
average branch length of the 500 rbcL tree set to 0.278,
and the average branch length of the 107 Archaea tree set
to 0.143.

Dataset generation: For each model tree and parameter
setting, we generated 50 sets of sequences each of length
16000 under the K2P+Gamma model. We then ran the
experiments on the first 200, 400, 600, 1000, 2000, 4000,
8000 and 16000 sites on the same set of sequences.

Fig. 4. Comparing variants of DCM-NJ on the Archaea 107-taxon
tree under the K2P+Gamma model. Average branch length is 0.143.

Modification to DCM-NJ methods: In order to decrease
running time, we modified the new methods to produce
only a small subset of the possible trees, by restricting
the set of q ∈ di j to only 50 values, rather than the
entire set of (n2) distances. Our brief experiments
suggest that reducing the number of thresholds can
reduce the topological accuracy, but generally not by
much; furthermore, it greatly reduces the running time.
Hence improved topological accuracy can be obtained by
examining more, or all, of the different thresholds.

Discussion: A comparison between DCM-NJ+TS and
DCM-NJ+SQS on the 107 taxon tree (see Figure 4)
reveals that DCM-NJ+TS is an improvement over DCM-
NJ+SQS. Other experiments (not shown) show DCM-
NJ+TS consistently performs at least as well as DCM-
NJ+SQS.

The distinction in performance between the four meth-
ods is noticeable on most of the trees (see Figure 4).
Figure 5 shows good relative performance by all methods.
In summary, it is clear that the optimal methods are DCM-
NJ+MP and DCM-NJ+ML, followed by DCM-NJ+TS,
and then by DCM-NJ+SQS. Furthermore, DCM-NJ+MP
and DCM-NJ+ML are indistinguishable in most tests.

DCM-NJ+ML/MP vs. NJ
We then compared our best methods, i.e., DCM-NJ+MP
and DCM-NJ+ML, to neighbor joining (NJ) and to
HGT+FP. In all our experiments DCM-NJ+MP and DCM-
NJ+ML were more accurate than the other methods.
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Fig. 5. Comparing variants of DCM-NJ on the rbcL 500-taxon tree
under the K2P+Gamma model. Average branch length is 0.278.

See, for example, Figure 6 and Figure 7. A comparison
between DCM-NJ+MP and DCM-NJ+ML is interesting.
In almost all our experiments they performed essentially
the same (the small improvement obtained in Figure 4 is
the greatest advantage we saw of ML over MP). This is
interesting since DCM-NJ+ML is statistically consistent,
and possible afc, while DCM-NJ+MP is neither.

VERY LARGE DATASETS
The earlier experiments show that DCM-NJ+ML (and
DCM-NJ+MP) outperform both NJ and the earlier afc
methods. However, we did not look at very large trees,
that is, trees of more than 1000 taxa. In this section, we
ask “How will topological errors grow with increasing
numbers of taxa, if we fix the average branch length and
the total sequence length available?” This question thus
addresses the feasibility of inferring the tree-of-life, where
the overall evolutionary distance and the number of taxa
will both be large. We examine this by fixing the average
branch lengths to two “nice” values.

Parameters: We generated 100 random tree topologies
of 50, 100, 200, 400, 800 taxa and 10 topologies of
1600 taxa with random branch lengths selected so that
the average branch lengths were either .05 or .005. For
each tree topology we then generated sequences of length
1000 under K2P+Gamma model of evolution. Due to time
constraints we could use only 10 runs for 1600 taxa.

Methods: We compared the error rates of DCM-NJ+MP,
DCM-NJ+SQS, NJ and HGT+FP on each dataset.

Fig. 6. DCM-NJ+ML vs. NJ vs. HGT+FP on the Archaea 107-taxon
tree under the K2P+Gamma model. Average branch length is 0.143.

Fig. 7. DCM-NJ+ML vs. NJ vs. HGT+FP on the rbcL 500-taxon
tree under the K2P+Gamma model. Average branch length is 0.278.

Discussion: In both experiments (the low branch length
case, see Figure 8, and the moderate branch length case,
see Figure 9), certain trends are clear. As the number
of taxa increases, we see an increase in the error rate
(the y-axis is the average RF error) for the NJ tree, but
evidently no increase in error for HGT+FP nor for the
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Fig. 8. DCM-NJ+MP vs. DCM*-NJ vs. NJ vs. HGT+FP on random
trees under the K2P+Gamma model. Sequence length is 1000.
Average branch length is 0.005.

two variants of DCM-NJ we study (i.e., DCM-NJ+MP and
DCM*-NJ). The relative performance between HGT+FP
and the DCM-NJ variants is clear: the best method is
DCM-NJ+MP, followed by DCM*-NJ, and then followed
by HGT+FP. The relative performance between NJ and
the other methods depends upon the number of taxa and
the rate of evolution. For the low branch-length trees, NJ
outperforms HGT+FP until 1600 taxa, though the curve
suggests that beyond this number NJ will be worse than
HGT+FP. However, except for the 50 taxon case, NJ
is worse than the DCM-NJ variants. For the moderate
branch-length trees, NJ is much worse than the DCM-NJ
variants throughout, and even worse than HGT+FP for the
majority of the range.

The figures suggest that the relative advantage obtained
by using DCM-NJ+MP will increase as the number of
taxa increases. This means that truly large phylogenetic
analyses which might not be feasible under NJ may be
feasible using methods such as DCM-NJ+MP.

Finally, we wish to address the surprisingly flat curve for
the error rates of HGT+FP, DCM*-NJ and DCM-NJ+MP.
A flat error rate increase is impossible, as we know
mathematically that all methods will have an increase
in error as the number of taxa increases, due to the
information content. We make, therefore, the following
conjecture. Suppose that NJ’s convergence rate is actually
polynomial in n rather than exponential. (This would
not contradict the theory in (Atteson, 1999), which is
just an upper bound.) If this were so, then DCM*-NJ,

Fig. 9. DCM-NJ+MP vs. DCM*-NJ vs. NJ vs. HGT+FP on random
trees under the K2P+Gamma model. Sequence length is 1000.
Average branch length is 0.05.

DCM-NJ+TS, and perhaps even DCM-NJ+ML would
have convergence rates that are bounded from above by a
polynomial in O(log log n) (see (Erdos et al., 1997, 1999;
Huson et al., 1999a)) on random trees. The error curve of
such a method might very well seem to be initially flat, as
these do.

CONCLUSIONS
In all our experiments, DCM-NJ+MP and DCM-NJ+ML
were at least as accurate as all the other methods we
tested. This was true for all sequence lengths, all model
trees, and all scalings. Furthermore, DCM-NJ+MP and
DCM-NJ+ML were more accurate than the popular NJ
method on a large portion of the parameter space. No
earlier polynomial time method has been able to provide
this kind of performance advantage, to our knowledge.
Furthermore, these methods are polynomial time, and
while slower than NJ, they are still fast enough to be
acceptable. For example, DCM-NJ+MP completes its
analysis on a 107 taxon tree in under three minutes.

FUTURE RESEARCH
There are several future research directions that we
plan to take. First, the new methods that incorporate
biologically significant optimization methods, such as
maximum likelihood (ML) and maximum parsimony
(MP), as part of the selection phase can be used as very
fast heuristics for obtaining good initial starting points for
ML or MP searches. Our experiments (data not shown
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due to space limitations) shows that these methods return
much better MP and ML trees than the NJ tree returns,
and almost as quickly. These optimization problems are
of major interest to systematists, and these methods (or
similar methods) may be very helpful.

More generally, the methods we have developed are
all specific examples of a general phylogenetic-method
booster. In fact, this research is part of an ongoing project
to explore the power of the DCM-style methods, which
began with (Huson et al., 1999a).
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