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Abstract

Billera, Holmes, and Vogtmann introduced an intriguing new phylogenetic tree metric for weighted trees with useful properties
related to statistical analysis. However, the best known algorithm for calculating this distance is exponential in the number of leaves
of the trees compared. We point out that lower and upper bounds for this distance, which can be calculated in linear time, can differ
by at most a multiplicative factor of

√
2.
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R1. Introduction

The evolutionary history of a set of species is fun-
damental to understanding the structural and functional
similarity between species. This history is often repre-
sented by rooted trees, with the leaves labeled by extant
(living) species. Evolutionary trees are regularly used to
organize genetic information, for alignment, annotation,
structure and function prediction [9]. Yet these evolu-
tionary relationships are themselves estimates. Optimal

* Corresponding author at: Department of Mathematics & Com-
puter Science, Lehman College–City University of New York, Bronx,
NY 12581, USA.

E-mail addresses: amenta@cs.ucdavis.edu (N. Amenta),
npost@ucdavis.edu (N. Postarnakevich), stjohn@lehman.cuny.edu
(K.S. John).

1 The second author did this work as a student at U.C. Davis, until
his accidental death in March of 2005.
Please cite this article in press as: N. Amenta et al., Approximating geodesi
doi:10.1016/j.ipl.2007.02.008

0020-0190/$ – see front matter © 2007 Published by Elsevier B.V.
doi:10.1016/j.ipl.2007.02.008
or near-optimal trees are found via programs imple-
menting sophisticated heuristic search strategies, such
as MrBayes [10], for maximum likelihood analysis,
and such as those in PAUP [13] and Ratchet [11], for
parsimony. These methods generally output not a sin-
gle “best” tree but a large family of equally, or al-
most equally, optimal trees. With current computational
power, it is possible to calculate hundreds to thousands
of possible evolutionary trees, or phylogenies, from in-
put genomic sequence data from a set of species.

With these huge sets of trees comes the question of
how to efficiently compare the tree in a biological rele-
vant way; in particular, how do we find the distance be-
tween two trees, that is, what should be our tree distance
metric? Usually a large set of trees is summarized using
a consensus tree, a kind of representative average, which
can be defined in various ways, depending on the metric.
Also, the clustering and visualization analyses for tree
distributions which we have been exploring [2,3,12], is
c tree distance, Information Processing Letters (2007),
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Fig. 1. On the left, three tree topologies; the lengths of the two non-terminal edges in each tree form the coordinates of a planar part of tree-space. In
the middle, the shortest path between two trees with topology T3 is a line segment, while between two trees with topologies T1 and T2 the shortest
path includes some topology changes. The relevant parts of tree-space can be unfolded to straighten the path. On the right, the lower bound path is
not constrained to lie in the tree-space. The upper bound path is constrained to go through the parts corresponding to T1 and T2 and the parts that
they share. Again, the relevant parts of tree-space can be unfolded to straighten the path.
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based on a distance metric on trees. We discuss the most
popular tree metrics in Section 2.

The mathematicians Billera, Holmes and Vogtmann
have recently proposed a new tree distance metric [4],
which we shall call geodesic distance. Geodesic dis-
tance resembles the usual Euclidean distance metric
used in geometry and statistics in an important way that
the other existing metrics do not: there is a unique short-
est path between two trees. The hope is that geodesic
distance can be used to adapt statistical techniques from
Euclidean geometry to compute better consensus trees
or more generally to understand relationships between
possible trees. In particular, the centroid of a set of trees
seems like a logical choice for a consensus tree, and
cetroids are well-defined with geodesic distance, but not
for metrics which allow many shortest paths.

The drawback of geodesic distance is that it is not
obviously easy to compute. However, in this note we
observe that it is easy to approximate: we give simple
upper and lower bounds which differ by a multiplicative
factor of at most

√
2.

2. Tree metrics

This section includes a brief overview of distance
metrics for phylogenetic trees. For a more detailed
overview, see Hillis et al. [9] or Bryant [6]. Commonly
used tree distances are Nearest Neighbor Interchange
(NNI), Tree-Bisection-Reconnection (TBR), Subtree-
Pruning-Regrafting (SPR), and Robinson-Foulds (RF).
The first three metrics define the distance between un-
weighted trees and are defined as the minimal number of
moves required to transform one tree into the other. The
three metrics differ in how the moves are defined; for in-
stance, in NNI, rotations are used. NNI [7] and TBR [1],
Please cite this article in press as: N. Amenta et al., Approximating geodesi
doi:10.1016/j.ipl.2007.02.008
E
D

Pas well as SPR for rooted trees [5] have been shown to
be NP-hard, and SPR for unrooted trees is conjectured
to be so also [1].

Since the other common metrics are intractable to
compute, RF is often the measure of choice in practice.
RF distance and geodesic distance are closely related,
and both can be defined for either rooted or unrooted
trees. From here on, we will consider rooted trees with
n leaves.

We can define RF distance in terms of an edge-
based representation for the trees. Each edge of a tree
separates a subtree from the root, and this subtree con-
tains a subset of the leaves; thus, we associate each
edge with a subset of the n leaves. Consider an arbi-
trary ordering on the possible subsets of the n leaves.
For each tree, we represent it as a point in which
the ith coordinate is one if and only if the ith sub-
set occurs in a subtree below an edge in the tree, and
zero otherwise. For example, in Fig. 1 the leaf set
is {a, b, c, d}, so, we can order the possible subsets
as: (∅, a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd,

bcd) (omitting set bracket notation to improve readabil-
ity). The tree T1 in Fig. 1 contains edges corresponding
to the subsets a, b, c, d, bc, bcd, abcd . If the edges are
unweighted, we represent the tree with the point (0,1,

1,1,1,0,0,0,1,0,0,0,0,0,1).
The Robinson–Foulds distance is just the L1 norm

on these points (
∑

i |xi − yi |, where xi , yi is the ith
coordinate of x and y, respectively). Equivalently, the
RF distance is the number of subsets which appear in
only one of the trees, and not the other. For instance, the
RF distance between trees T1 and T3 in Fig. 1 is 2. The
RF distance is often normalized by dividing by n.

RF distance is not computed using this representa-
tion of trees as points, which would require time O(2n).
c tree distance, Information Processing Letters (2007),



ARTICLE IN PRESS

T

JID:IPL AID:3623 /SCO [m3+; v 1.70; Prn:8/03/2007; 14:49] P.3 (1-5)

N. Amenta et al. / Information Processing Letters ••• (••••) •••–••• 3

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104
U
N

C
O

R
R

E
C

Instead, Day [8] gives a linear-time algorithm for calcu-
lating RF distance.

3. Weighted edges, treespace and geodesic distance

The discussion up until this point has considered
trees with unweighted edges. If there are weights asso-
ciated with the edges, we can replace the non-zero ele-
ments in the representation above with the edge weights.
This set as an embedding of the set of tress, or tree-
space, into Euclidean space of dimension 2n. Since a
tree with n leaves has at most 2n − 2 edges, all but at
most 2n − 2 coordinates of any point in the embedded
tree-space are zero, although not all points with 2n − 2
non-zero coordinates correspond to trees.

Every fully-resolved tree topology with 2n−2 edges
is represented by a (2n − 2)-dimensional affine sub-
space, parameterized by the weights of the 2n − 2
edges. Consider shrinking some subset of the edges in
a fully-resolved tree to length zero, so that the tree de-
velops polytomies (nodes of degree greater than three).
This produces a tree with fewer edges, corresponding
to a lower dimensional affine subspace. This lower-
dimensional subspace on the boundary of several of the
(2n − 2)-dimensional subspaces corresponding to the
different possible expansions of the polytomy. These
shared subspaces connect the (2n − 2)-dimensional
spaces, forming an overal connected space.

Defining the distance between two trees with weight-
ed edges provides a metric for this space. One way is to
extend the notion of RF distance, defining the weighted
RF distance to be the L1 norm applied to the point rep-
resentation of the trees. For most pairs of trees, there
are an infinite number of “Manhattan” shortest paths,
in which only one point coordinate changes at a time,
which realize the L1 distance. We could also consider
the standard Euclidean distance between points in 2n-
dimensional space. In this case there is only one shortest
path between two trees, but unless the two trees share
the same topology, the path is not contained in the em-
bedded tree-space. Since the Euclidean shortest path is
the shortest path in the ambient space, its length is a
lower bound on the length of any path connecting the
two trees which is contained in tree-space.

Billera et al. [4] define the geodesic distance be-
tween two trees to be the length of the shortest path
between the two trees which lies entirely within tree-
space. When two fully-resolved trees T1, T2 have the
same topology (i.e., they only differ in the weights as-
signed to their edges), the two corresponding points lie
in an affine subspace of dimension 2n−2 and the unique
Please cite this article in press as: N. Amenta et al., Approximating geodesi
doi:10.1016/j.ipl.2007.02.008
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shortest path between them is simply a straight line; see
middle picture in Fig. 1.

When the trees T1 and T2 have different topolo-
gies (e.g., right picture in Fig. 1), the shortest path be-
tween the corresponding points cannot lie in a single
affine subspace, since it must include topology changes.
If there are many possible ways to order the topol-
ogy changes, finding the shortest path may be difficult.
Billera et al. showed, using powerful techniques from
mathematical topology, that the space with this metric is
CAT(0), which implies that the shortest path is unique,
and a geodesic. We call this geodesic distance. Because
it gives unique geodesics, geodesic distance seems in-
teresting as a potential tool for the statistical analysis of
problems related to phylogenetic trees.

4. Bounds on geodesic distance

We compare two intuitive bounds on the geodesic
distance. As mentioned above, the Euclidean distance
between T1 and T2 is a lower bound on the geodesic
distance. So we have

Dlo(T1, T2) =
√∑

e

δ(e),

where δ(e) = (w1(e) − w2(e))
2 and wi(e) is the weight

of edge e in tree Ti , and if e is not an edge of Ti ,
wi(e) = 0. The unique shortest path corresponding to
this distance metric does lie in tree-space, except when
T1, T2 have the same topology.

The upper bound is given by the length of a partic-
ular path in tree-space. This path goes directly from T1

to a strict consensus tree S of T1 and T2, and then to T2.
The strict consensus tree S is defined to be the tree con-
taining only those edges that occur in both input trees.
Strict consensus trees are usually used to summarize a
set of phylogenetic trees. For that purpose, the weights
on the edges can be found by averaging. Our goal, how-
ever, is to choose the edge weights so as to make the
total path length as short as possible.

Let S1 be the tree formed by shrinking all the edges
of T1 −T2 to length zero, so that the lengths of the edges
shared by T1 and T2 do not change at all. Define S2 anal-
ogously, shrinking the edges of T2 −T1. Since S,T1, and
S1 all lie in the same Euclidean subspace of tree-space
(with S,S1 on the boundary of the subspace), and sim-
ilarly S,T2, S2. The segment T1, S1 is perpendicular to
S1, S, and similarly T2, S2 and S2, S. So we can write
the total length of the path from T1 to S to T2 as the sum
of the two Euclidean lengths
c tree distance, Information Processing Letters (2007),
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Fig. 2. The two-dimensional sub-planes containing T1,L and T2,L

can be folded or unfolded along L without changing the intrinsic
length of the shortest path from T1 to T2. So the length can be de-
termined in the sub-plane formed by unfolding them to lie in the same
plane.

Dhi(T1, T2) = d(T1, S) + d(S,T2)

=
√

d2(T1, S1) + d2(S1, S)

+
√

d2(S,S2) + d2(S2, T2).

Claim 1. The choice of S minimizing Dhi must lie on
the line connecting S1 and S2.

Proof. Assume for the purpose of contradiction that
there is some choice of S which minimizes Dhi which
is not on the line through S1, S2. Now let S′ be the
projection of S to the line through S1, S2. The points
S′, S, S1, S2 all lie in a two-dimensional plane. Clearly
d(S1, S

′) � d(S1, S) and d(S2, S
′) � d(S2, S), so using

S′ as the intermediate tree would give a shorter path,
contradicting the assumption. �

We use the claim to show our main result:

Theorem 2. The lower and upper bound on the geo-
desic difference between any two trees differs by a most
a multiplicative factor of

√
2.

Proof. From the claim, S lies on the line L contain-
ing S1, S2, and the entire path from T1 to T2 lies in
the two two-dimensional subspaces containing, respec-
tively, L,T1 and L,T2. We can visualize the path using
two triangles in the same plane, as in Fig. 2. This corre-
sponds to unfolding the two-spaces along L so that we
can draw the path as a straight line; the intrinsic length
of the path remains the same however we unfold the
space. Notice we can re-write the distance as

Dhi(T1, T2) = [(
d(T1, S1) + d(S2, T2)

)2

+ (
d(S1, S) + d(S,S2)

)2]1/2

which simplifies to:
Please cite this article in press as: N. Amenta et al., Approximating geodesi
doi:10.1016/j.ipl.2007.02.008
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Fig. 3. Histogram of the pairwise distances of the animal dataset. Top
graph shows the distances calculated with the lower bound approxi-
mation. The middle graph shows the upper bound approximation. The
bottom graph shows a histogram of the ratio of the upper bound to
lower bound for each pair of trees. Note that the maximum for the
ratio is

√
2 which is achieved for a large fraction of the pairs of trees.

Dhi(T1, T2) =
[(√ ∑

e∈(T1−T2)

δ(e) +
√ ∑

e∈(T2−T1)

δ(e)

)2

+
∑

e∈(T1∩T2)

δ(e)

]1/2

.

Similarly, we can re-write

Dlo =
[ ∑

e∈(T1−T2)

δ(e) +
∑

e∈(T2−T1)

δ(e)

+
∑

e∈(T1∩T2)

δ(e)

]1/2

.

Now we consider the ratio Dhi/Dlo. We would like
to show that this ratio is never larger than

√
2. Let

a =
( ∑

e∈(T1−T2)

δ(e)

)1/2

, b =
( ∑

e∈(T2−T1)

δ(e)

)1/2

,

and

c =
∑

e∈(T1∩T2)

δ(e).

Then, the ratio can be written as: Dhi/Dlo = ((a + b)2

+ c)/(a2 +b2 + c). Clearly this is maximized when c =
0, reducing the problem to the maximum of (a + b)2/

(a2 + b2). This is maximized when a = b. That is, the
ratio between the upper and lower bounds is maximized
when the common edges have the same weights in T1
and T2 (i.e., c = 0) and the edges in T1 − T2 contribute
the same weight a as the edges in T2 − T1. In this case
Dhi = 2a and Dlo = √

2a. �

c tree distance, Information Processing Letters (2007),
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5. Running time

Note that both the lower and upper bounds can be
calculated in time linear with respect to the number
of leaves in the tree. For the lower bound, the sim-
ple Euclidean distance calculation is O(n). The upper
bound’s running time calculates a constant number of
Euclidean distances, and also calculates the strict con-
sensus tree as assigns different weights to its edges to
produce the trees S1, S2 and S. The strict consensus tree
can be obtained in linear time again by using the tech-
niques of Day [8]. This gives a linear running time for
the upper bound algorithm.

6. Application

We have implemented our distance bounds and ex-
amined the inter-tree distances for a large sets of phy-
logenetic trees. The trees were derived from an RNA
dataset for 48 animals. In particular, 18S (large riboso-
mal subunit) RNA was extracted for 48 animals, across
the tree of life, from the European rRNA database (http:
//rrna.uia.ac.be/). A heuristic parsimony search, using
PAUP* [13], was run and the 215 best scoring trees were
saved.

7. Conclusion and future work

While the geodesic distance is hard to compute ex-
actly, we give linear time algorithms that compute lower
and upper bounds that differ by a constant factor. These
approximations show promise for distinguishing more
characteristics of the dataset. Future work includes find-
ing tighter bounds on the geodesic distance, while keep-
ing the efficient running time, to yield better distance
methods.
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