
SequenceJuxtaposer: Fluid Navigation For Large-Scale
Sequence Comparison In Context

James Slack∗ Kristian Hildebrand∗ † Tamara Munzner∗ Katherine St. John‡

Abstract

SequenceJuxtaposer is a sequence visualiza-
tion tool for the exploration and comparison of
biomolecular sequences. We use an information
visualization technique called “accordion draw-
ing” that guarantees three key properties: con-
text, visibility, and frame rate. We provide con-
text through the navigation metaphor of a rub-
ber sheet that can be smoothly stretched to show
more details in the areas of focus, while the
surrounding regions of context are correspond-
ingly shrunk. Landmarks, such as user speci-
fied motifs or differences between aligned base
pairs across multiple sequences, are guaranteed
to be visible even if located in the shrunken ar-
eas of context. Our graphics infrastructure for
progressive rendering provides immediate re-
sponsiveness to user interaction by guaranteeing
that we redraw the scene at a target frame rate.
Our preprocessing algorithms are subquadratic:
O(nk) for k sequences of n base pairs each.
All runtime rendering algorithms are sublinear
in nk: they are O(v) where v is the number of
items visible onscreen at once, and v � nk.

∗Dept of Computer Science, U. of British
Columbia, Vancouver, BC V6T 1Z4, Canada,
{jslack,hilde,tmm}@cs.ubc.ca.

†Dept Media Systems, Bauhaus U., Weimar, Germany,
kristian.hildebrand@medien.uni-weimar.de.

‡Dept of Math & Computer Science, Lehman College
& the Graduate Center, City U. of New York, Bronx, NY
10468, USA, stjohn@lehman.cuny.edu.

SequenceJuxtaposer supports interaction at 20
frames per second when browsing collections
of several hundred sequences that comprise over
1.7 million total base pairs. We show three ex-
ample applications with large, publicly avail-
able datasets, and we are able to quickly observe
many features that had previously required sig-
nificant analysis to discover.

Keywords: sequence analysis, motif and gene find-
ing, data visualization, Focus+Context

1 Introduction
Biomolecular sequence comparisons are essen-
tial in understanding underlying genomic pat-
terns. Current sequence browsers [14, 17, 34,
37] support examining the data at any level from
a global overview down to a detailed view of a
small section, where the interaction happens as
a discrete jump from one level of magnification
to the next. At high levels of magnification only
a very small subset of the sequence is visible, so
it is easy to lose track of the current location and
its position with respect to other areas of inter-
est. The cognitive load of maintaining a mental
model of navigation history is very high, and hu-
mans have a very limited capacity to do so [38].
Exploration often entails frequent backtracking
where people remind themselves of what they
have already seen and where they are now in re-
lation to previous viewpoints.

1

Figure 1: The entire onion yellows phytoplasma (OY) genome of 860 Kbp. The eight successive
screenshots show the exploration of a motif in the genome using the accordion drawer navigation
technique, where we interact with sequence data as if it were drawn on a stretchable rubber sheet
with the borders tacked down. Top: after searching for the motif ATTAATTTCAT, the found bases
are marked as landmarks that are guaranteed to be visible, even if they would ordinarily be smaller
than a single pixel in this overview. Second-Sixth: steps along the animated transition that au-
tomatically expands the entire found group. Seventh-Eighth: expansion by selecting an onscreen
region and dragging the mouse to resize it.

SequenceJuxtaposer allows people to interact
with sequence data as if it were drawn on a rub-
ber sheet with the borders tacked down [29], as
shown in Figure 1. Stretching certain areas so
more detail can be seen causes the rest of the
sheet to shrink accordingly, but landmarks re-
main visible in the periphery. We call this ap-
proach accordion drawing because the effect
is similar to the stretching and shrinking of an
accordion bellows. It is an example of a class
of techniques known as “Focus+Context” in the
information visualization literature [5, 11, 15,
19], where overview and detail are integrated
into a single combined view.

Accordion drawing is a powerful new in-
formation visualization technique that we re-
cently introduced with the TreeJuxtaposer sys-
tem for visually comparing large phylogenetic
trees [23]. In this work, we introduce accordion
drawing for biomolecular sequences. Accor-
dion drawing provides fluid exploration of large
datasets through guarantees of three key prop-
erties: context, visibility and frame rate. We
always provide visible context around the ex-
panded areas of interest. Ensuring that marked
areas stay visible, so that even in the shrunken
regions of the rubber sheet they act as land-
marks, requires significant graphics infrastruc-

2

ture. We accomplish this in O(v) rather than
O(t) time, where v is the number of visible nu-
cleotides, t is the total number of nucleotides,
and v � t. Without that guarantee, marks
would simply disappear if the group of nu-
cleotides was shrunk to an area smaller than a
single pixel, which would lead to user disori-
entation. Maintaining a requested frame rate
for real-time drawing, for example 20 frames
per second, provides smooth transitions during
stretching or shrinking. Transitions allow peo-
ple to easily track visual landmarks, which is
faster than reacquiring visual targets after an
abrupt jump cut from one view to the next [27].

2 Prior Work
Comparing and analyzing sequences is a funda-
mental part of bioinformatics. Many text-based
alignment tools were developed to address this
problem, including [10, 12, 20]. The text-based
alignment tools work well for aligning and an-
alyzing only a few small sequences. However,
viewing the overall sequence structure becomes
difficult when the length of a sequence exceeds
the window size (often 80-100 nucleotides).

Alternative approaches to sequence view-
ing include embedding sequences or proper-
ties of the sequences in three dimensional
space [1, 6, 8, 35], using fractals [2], using
“dekapentagonal” summary figures [39], repre-
senting alignments by proportional sized letters
at each position [30] and formatting sequences
for publication [3]. Further advances in visu-
alization of pairwise aligned sequences include
Artemis [28], PipMaker [31], and BARD [33].

SequenceJuxtaposer complements recent
web-based viewers that allow the search
and display of genomic sequences integrated
with annotation databases [14, 17, 34, 37].
Other viewers, such as VISTA [21] or phylo-
VISTA [32], are intended to run on a local client.

Although these approaches have strengths, and
many of them allow navigation of a great deal
of information at different magnification levels,
none of them allow users to compare multiple
sequences with context preserved and fluid
navigation between different magnification
scales.

3 Applications
SequenceJuxtaposer allows fluid navigation of
whole genomes, where the overall context of the
genome is visible even when regions of interest
are being examined in-depth. Our application
currently handles DNA and RNA sequence data
(or strings over the alphabet that include the nu-
cleotide bases {A,C,G,T,U}, a symbol N for un-
determined bases, and a symbol ’-’ for gaps).

Onion Yellows Genome: As a case in point,
we look at the genome for Onion yellows phy-
toplasma (OY), a recently completed whole
genome (December 2003) [25] pathogen trans-
mitted by insects. The difficulty in culturing
it in vitro has hampered the study of its biol-
ogy. With the sequencing of the whole genome,
bioinformatics techniques can be used to shed
light on both this and other important phytoplas-
mas. Finding new ways to target its spread is
of economic importance due to the damage it
causes to commercial plants, because the only
known effective treatment is by the antibiotic
tetracycline [9].

The OY genome has a relatively small size of
860,631 bp which means it can be loaded into
SequenceJuxtaposer in its entirety, as seen in
Figure 1. Using the search feature, we focus
in on thymidylate kinase (TMK), an anti-viral
target for phytoplasmosis. Several bacterial ho-
mologues with catalytic activity were recently
found by Miyata et al. [22], and we examine on
one of them, tmk-a (GenBank accession number

3

Figure 2: Searching for motifs found in TMK genes in the onion yellows phytoplasma (OY)
genome. The first and second views show the locations of P-loop motifs in the context of the
genome that were found with search string GGNNNNGGNAANACNTCNNNNNNN in unstretched
and magnified views, respectively. The third and fourth views show the locations of TMP binding
motifs found with search string GANNNNTNNNNNNNNNNNNNNNNNGCNTANCAN, again with an
unstretched view followed by a magnified one.

AB010446). We can quickly find several poten-
tial copies of the gene by typing a segment of it,
ATTAATTTCAT, into the search field to find the
beginning of the coding region. The first line
of Figure 1 shows their relative position in the
whole genome. The following five lines in Fig-
ure 1 show the animated transition of growing
the search results as a group. The bottom two
lines of Figure 1 show two frames during a fi-
nal zoom on the left side, where the mouse was
used to select a single copy of the gene in an on-
screen rectangle that was interactively resized.
The ability to focus in on duplicate genes, in the
context of the whole genome, allows the quick
visualization of related areas such as regulatory
and functional regions upstream of genes them-
selves.

Sequence Juxtaposer also allows searches by
regular expressions to find more sophisticated
motifs. For example, we can locate important
regions on the TMK gene such as the P-loop
and TMP binding site identified by Miyata et
al. [22]. Figure 2 shows both a P-loop motif
search string which has 6 matches across the
whole genome, and a TMP-binding site mo-

tif search with 9 matches. The simple search
strings we used also match a few false posi-
tives, and after distinguishing the possible TMK
matches through manual exploration we show
those regions in expanded form. The regu-
lar expression searches supported by Sequence-
Juxtaposer allow easy exploration for duplicate
genes, interesting structures, and regulatory ele-
ments.

Mammalian Mitochondrial Dataset: The
Murphy et al. [24] data set consists of molec-
ular data for 22 genes and 44 mammals. The
sequences are of length 16,397 bp and include
19 nuclear and 3 mitochondrial gene sequences
for 42 placental and 2 marsupial outgroups. The
placental mammals fall into four superordinal
groups and the analysis of this dataset focused
on resolving the interrelationships among these
groups. Figure 3 top shows all 44 sequences for
the single gene CNR1, and when we find the
appropriate difference threshold with the slider
we can immediately see that whales, dolphins,
and hippos are distinct from the other sequences.
These three mammals form a clade, and further

4

adjusting of the slider shows other clades in Fig-
ure 3 second through fourth. The ability to see
the phylogenetic signal of clade membership by
simply manipulating the difference slider shows
SequenceJuxtaposer’s power.

RbcL Gene from Seed-Plants: The rbcL
gene found in plants encodes the large subunit
of ribulose bisphosphate carboxylase, a crucial
enzyme in photosynthesis [7]. Given its im-
portant functional role, the protein sequence is
highly conserved across species. The 714 Kbp
Chase et al. treezilla dataset contains 500
seed-plant rbcL sequences of 1428 base pairs
each [7, 26]. Kellogg and Juliano found that in
this dataset 105 sequences (22%) are absolutely
conserved across all, while another 110 had only
one change [16]. While the function (and amino
acids coded for) are highly conserved, the actual
codons vary from sequence to sequence.

Wall and Herbeck did a sophisticated prob-
abilistic analysis, using maximum likelihood
techniques and factoring in the G+C content
of each species [36]. A goal was to deter-
mine whether codon bias changes over time and
if evolutionary trends can be found to explain
codon choice and differing amounts of bias.
They found that certain residues were signifi-
cantly correlated with codon bias. These were
the twofold amino acids (with exactly two pos-
sible codons): glutamic acid, lysine, cystine,
phenylalanine, glutamine, and tyrosine, plus
leucine as the only sixfold one. Proline, a four-
fold amino acid, was the only exception to the
easily characterized behavior of the other four-
fold amino acids, because its codon bias was un-
usually divergent across clades.

Figure 4 shows that we can quickly ob-
serve this phenomenon in the treezilla rbcL
dataset using the visualization capabilities built
into SequenceJuxtaposer. A few minutes of in-
teractive exploration with the slider locates the

interesting difference threshold of 62%, where
we just begin to see red marks in the image.
Figure 4 top shows the areas around these dif-
ferences after expansion, where the red mark
falls at the end of the codon triplet. For ex-
ample, we see that in the second column of
highlighted differences, the codons are mostly
CTN (where N matches any character), because
the vertical strip corresponding to the first nu-
cleotide site is mostly blue. A few pink areas
show that TTN also occurs. Six codon possibili-
ties code for leucine and the other two code for
phenylalanine. Both of those residues are cor-
related strongly with codon bias. Similarly, we
can inspect the third area of differences to see
that the dominant codon is the yellow-green of
GAN. In this case, the identity of the third site in
the codon affects which residue it encodes, but
the red markings hide this information. Figure 4
bottom shows the same view with the red differ-
ence marking turned off, so that we can then eas-
ily see the colors that represent nucleotide type
in those vertical strips. Glutamic acid codons
end with A (green) or G (yellow), which occur a
significant fraction of the time. The fourth dif-
ference column of CCN encodes proline.

Although SequenceJuxtaposer does not visu-
ally communicate all of the fine-grained details
of the codon bias captured in Wall and Her-
beck’s maximum likelihood analysis technique,
our tool does render many of their results vi-
sually apparent after a minimal amount of vi-
sual exploration. The set of techniques we de-
scribe above are: focusing on regions of differ-
ence, zooming in on neighboring codons, tog-
gling difference higlighting, and viewing other
species with similar patterns. Examining the
regions of differences provides intuition about
which amino acids are coded by several differ-
ent codons and shows their relative position in
the sequence. The new visualization capabili-
ties of accordion drawing will provide similar

5

biological insight to guide future experimental
and computer analysis of sequences.

4 Algorithms
SequenceJuxtaposer uses advanced algorithms
for drawing, searching and interaction. Our
dataset contains a total number t = nk of nu-
cleotides, where n is the number of nucleotides
per sequence and k is the number of sequences.
In the common case of redrawing frames, which
happens many times per second, our runtime
algorithms are all sublinear in t. The user-
initiated actions of changing difference thresh-
olds or searching for motifs are linear in t. Our
preprocessing algorithms are all subquadratic in
t. Gaps that occur in all loaded sequences are
automatically elided during preprocessing.

Differences: Computing the differences be-
tween aligned nucleotides in sequences has a
processing cost of O(nk), where n is the number
of nucleotide positions and k is the number of
sequences. We make a first pass through the se-
quences at a nucleotide position to find the “ma-
jority” nucleotide, that occurs most often, and
what percentage of nucleotides in that column
differ. If the percentage is beyond the threshold,
which is interactively controllable by the user
through a slider, then we make a second pass
through that column to mark the nucleotides that
do not match the majority. Gaps and undeter-
mined base pairs are ignored. This O(t) pro-
cessing happens at startup time and whenever
the user moves the slider.

Searching: Users initiate a search either by
entering characters in a text box or by sim-
ply dragging the mouse in the window across
an expanse of nucleotides while the shift key
is held down. Our algorithm is based on the

linear-time Knuth-Morris-Pratt string-matching
algorithm [18]. Our variant supports gap-aware
search, skipping gaps when checking if a se-
quence matches a search string. We also support
a limited form of regular expressions by option-
ally allowing search strings to contain the un-
determined base character N that matches any
nucleotide. The search cost is also O(t).

Interaction: The look and feel of the fluid
interaction is difficult to communicate through
words and still images, so we also provide an
accompanying video showing the system in ac-
tion∗.

Rectangular areas can be expanded or con-
tracted by selecting either an area of the window
to freely resize with the mouse, or by picking
a group of nucleotides to grow or shrink. Al-
though the absolute position of an item changes
when we resize regions, the relative ordering
between items stays constant in both the hori-
zontal and vertical directions. With interactive
resizing, the user drags the mouse in the win-
dow to define the active area and then resizes
that area by moving the visible rubberband from
one of its corners. Users can also trigger an
animated transition to grow or shrink all nu-
cleotides belonging to a particular group with
a button press. The three main groups are the
nucleotides marked as current search results, as
alignment gaps, and as different according to the
current threshold value.

Drawing: Our drawing algorithms are de-
signed for scalable performance even when the
total number of nucleotides t in the dataset is
much larger than the number of visible nu-
cleotides v that can be seen in any single
view. Using algorithms that are O(t) would lead
to unacceptably slow interactive performance,

∗http://www.cs.ubc.ca/˜tmm/papers/sj

6

whereas O(v) or O(log t) yields acceptable run-
time results. The number of visible nucleotides
depends on the number of pixels p available for
display. We must always keep the entire dataset
in memory, because with rubber sheet naviga-
tion the set of visible items could change drasti-
cally in just a few frames.

One obvious way to ensure O(v) rendering is
to cull the geometric elements in highly com-
pressed areas, where they would be invisible be-
cause they are smaller than a single onscreen
pixel. However, our guarantee of landmark
visibility requires checking if any of the nu-
cleotides corresponding to a highly compressed
onscreen area should be marked. The naive ap-
proach to this would be linear in t, the total
number of nucleotides. Instead, at preprocess-
ing time we build a quadtree in O(t log t) time
that maps the colored boxes that are the geo-
metric representation of a nucleotide into a hi-
erarchical decomposition of space into quadtree
cells. In our previous description of accor-
dion drawing for trees, we describe a variant
of quadtrees that efficiently supports navigation
through growing and shrinking areas [23]. Be-
fore culling, we check a quadtree cell against
each of the two marked groups (differences or
search results). The groups are kept as r con-
tiguous ranges, where r can be at most t/2,
since adjacent ranges are merged when items are
added or removed from groups. We store the r
ranges in a sorted tree for an O(log r) lookup, so
the total cost of the guaranteed visibility check
O(v log r), which is indeed sublinear in the total
node count t.

We want immediate realtime response when
resizing regions, even if the dataset is very
large. If we simply send every geometric item
in the scene through the conventional render-
ing pipeline supported in graphics hardware, we
have no such guarantee: the time it takes to ren-
der depends on the size of the dataset. We in-

stead want to draw for a fixed amount of time
and then check back for user interaction before
continuing. This approach is called progres-
sive rendering [4], and although popular with
high-end graphics applications [13] it is unfor-
tunately uncommon in information visualization
systems. We use a priority queue to draw items
in order of current onscreen size so that any par-
tial frame along the way has the best possible
picture, where the magnified areas are drawn be-
fore compressed ones.

The guarantees on frame rate and visibility in-
cur overhead compared to simply using the stan-
dard rendering pipeline. However, we argue that
the cost is outweighed by the benefits of im-
mediate interactive response and persistent land-
marks. Our approach provides very high infor-
mation density as well as extremely lightweight
and fluid navigation.

Performance: Web-based sequence browsers
impose minimal requirements on the local client
machine, because all of the major computation
is done with a large remote server farm [14,
17, 34, 37]. In contrast, SequenceJuxtaposer
requires significant memory resources to load
very large datasets in order to support fluid nav-
igation. We require immediate access in local
memory not only to the entire raw dataset, but
also to our supporting data structures such as the
quadtree-based accordion drawers.

Our prototype is written in Java using the
GL4Java bindings to the OpenGL graphics li-
brary. The benchmarks below were run on a
3.0GHz Pentium 4 with 2GB of main memory
running the Linux 2.4.20-24.9smp kernel, Java
1.4.1 02-b06 (HotSpot) with a 1.5GB heap, and
an nVidia GeForceFX 5900 Ultra graphics card.

Figure 5 shows that we have achieved linear
memory use, and can support exploration for a
maximum of 1.7 million base pairs. Our sys-
tem’s linear memory footprint allows it to be

7

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

M
em

or
y

(M
b)

Nucleotides (Millions)

Memory Performance

Figure 5: Our memory footprint is linear in the
number of base pairs, and our system handles real-
time exploration in context for datasets of up to 1.7
million base pairs.

used for interactive exploration of both huge
datasets on high-end desktop machines, and
medium-sized datasets on low-end laptops such
as iBooks.

Our second benchmark tests the time required
to preprocess and draw frames for the entire
Murphy et al. [24] dataset of 44 sequences of
16397 bp each, 721 Kbp total. Preprocessing
to compute differences and build our accordion
drawer data structures took 25 seconds of wall
clock time. The time to draw the entire scene
in full detail ranged from 5 seconds for the
best case with no marked regions to check for
guaranteed visibility, to 7 seconds for the worst
case where every column that has differences is
marked. Recall that we always provide interac-
tive response in 100 milliseconds, so users can
interact without waiting for the system to pro-
gressively finish filling in the full scene.

Finally, our approach adapts well to very high
resolution displays such as the 9Mpixel IBM
T221 flatpanel display. In our accompanying
video, we show that our progressive rendering
approach provides realtime responsiveness.

5 Future Work
SequenceJuxtaposer is open source, and
a beta version is currently available at
http://www.cs.ubc.ca/˜tmm/projects/

SequenceJuxtaposer/.
We envision a wide range of possible future

work for SequenceJuxtaposer. We would like
to add support for proteins, and allow selection
of amino acid coloring based on standard clas-
sifications of proteins such as polarity or hy-
drophylic vs. hydrophobic status. Displaying
gene annotations in SequenceJuxtaposer would
enable to navigation through a rich and user-
controllable set of landmarks. Current genome
browsers display such information, and our
challenge would be to do so efficiently enough
to maintain our real-time fluid navigation capa-
bilities. Ultimately, we could use annotations
to create a hierarchical series of landmarks that
provide layers of abstraction, allowing naviga-
tion at multiple levels of detail, ranging from
base pairs to genes to chromosomes to entire
genomes.

In the short term, we plan to join TreeJux-
taposer with SequenceJuxtaposer for automatic
linked navigation between phylogenetic trees
and multiple sequences. We would like to use
phylogenetic trees directly as the source of hi-
erarchical guides to allow the viewing of thou-
sands of sequences in a meaningful way. We
propose using trees not only as a navigational
tool, but also as a way to locate possible regu-
latory elements in aligned whole genomes, and
to classify higher level differences between very
large datasets.

6 Conclusion
SequenceJuxtaposer incorporates the powerful
information visualization technique of accor-
dion drawing where details are always shown

8

within their global context, landmarks are guar-
anteed to be visible, and the frame rate for re-
drawing the scene is guaranteed to provide re-
altime response. We achieve a runtime com-
plexity of O(v), where v is the visible number
of nucleotides bounded by the number of pix-
els p in the display, rather than the O(t) cost
of the total number of base pairs. Our start-up
and preprocessing time is bounded by O(t log t)
time, and our overall memory footprint is lin-
ear in the number of aligned sequences. We
can load hundreds of sequences with a total of
over 1.7 million base pairs, maintaining the abil-
ity to fluidly resize areas of interest. We al-
low exploration of differences between the se-
quences by interactively changing the threshold
for marking differences at each nucleotide site.
We also support searching for motifs with im-
mediate visual feedback. SequenceJuxtaposer’s
innovative and powerful new capabilities for vi-
sualizing and exploring biomolecular sequence
data can quickly lead users to the kinds of bio-
logical insights that previously required exten-
sive analysis.

7 Acknowledgements
We thank Wayne Maddison for originally sug-
gesting we attack this problem, David Hillis,
David Haussler, Nina Amenta for helpful con-
versations, and Ciarán Llachlan Leavitt for com-
ments on paper drafts. We also thank the
Hillis lab at UT-Austin for the test dataset of
first benchmark. Funding was provided by
NSF/DEB-0121651/0121682, NSERC/RGPIN
262047-03, and Hildebrand was supported by
the German Academic Exchange Service.

References
[1] R. Mark Adams, Blaze Stancampiano, Michael

McKenna, and David Small. Case study: A vir-

tual environment for genomic data visualization. In
IEEE Visualization 2002, pages 513–516, 2002.

[2] Dan Ashlock and James W. Goldin III. Evolutionary
Computation and Fractal Visualization of Sequence
Data, chapter 11. Morgan Kauffman, 2001.

[3] E. Beitz. TeXshade: Shading and labeling of multi-
ple sequence alignments using LaTeX2e. Bioinfor-
matics, 16:135–139, 2000.

[4] Larry Bergman, Henry Fuchs, Eric Grant, and Susan
Spach. Image rendering by adaptive refinement. In
SIGGRAPH, pages 29–37, 1986.

[5] M. Sheelagh T. Carpendale, David J. Cowperth-
waite, and F. David Fracchia. Three-Dimensional
Pliable Surfaces: For effective presentation of visual
information. In Proc. UIST, pages 217–226, 1995.

[6] Hsuan T. Chang, Neng-Wen Lo, Wei C. Lu, and
Chung J. Kuo. Visualization and comparison of
DNA sequences by use of three-dimensional trajec-
tories. In Proc. First Asia-Pacific Bioinf. Conf, pages
81–85. Australian Computer Society, Inc., 2003.

[7] M.W. Chase et al. Phylogenetics of seed plants: An
analysis of nucleotide sequences from the plastid
gene rbcl. Ann. Missouri Bot. Gard., 80:528–580,
1993.

[8] Ed Huaihsin Chi et al. Visualization of biological
sequence similarity search results. In Proc. of IEEE
Visualization ’95, page 44, 1995.

[9] D. L. Davies and M. F. Clark. Maintenance
of mycoplasma-like organisms occurring in pyrus
species by micropropagation and their elimination
by tetracycline therapy. Plant Pathol, 43:819–823,
1994.

[10] L. Duret, E. Gasteiger, and G. Perrire. LalnView: A
graphical viewer for pairwise sequence alignments.
Comput. Applic. Biosci., 12:507–51, 1996.

[11] George W. Furnas. Generalized fisheye views. In
Proc. SIGCHI, pages 18–23, 1986.

[12] N. Galtier, M. Gouy, and C. Gautier. SeaView and
Phylo win, two graphic tools for sequence align-
ment and molecular phylogeny. Comput. Applic.
Biosci., 12:543–548, 1996.

[13] Hugues Hoppe. View-dependent refinement of pro-
gressive meshes. In SIGGRAPH, pages 189–198,
1997.

9

[14] T Hubbard et al. The Ensembl genome database
project. Nucleic Acids Research, 30(1):38–41, 2002.
www.ensembl.org.

[15] T. Alan Keahey and Edward L. Robertson. Nonlin-
ear magnification fields. In Proc. IEEE Symposium
on Information Visualization, pages 51–58, 1997.

[16] E.A. Kellogg and N.D. Juliano. The structure and
function of rubisco and their implications for sys-
tematic studies. Amer. J. Botany, 84(413), 1997.

[17] W.J. Kent et al. The human genome browser
at UCSC. Genome Res., 12:996–1006, 2002.
genome.ucsc.edu.

[18] Donald E. Knuth, James H. Morris, and Vaughn R.
Pratt. Fast pattern matching in strings. SIAM J.
Computing, 6(1):323–350, 1977.

[19] John Lamping, Ramana Rao, and Peter Pirolli. A
Focus+Content technique based on hyperbolic ge-
ometry for viewing large hierarchies. In Proc.
SIGCHI, pages 401–408, 1995.

[20] Wayne P. Maddison and David R. Maddison. Mac-
Clade: Analysis of Phylogeny and Character Evolu-
tion. (User’s manual). Sinauer Associates, Sunder-
land, MA, 1992.

[21] C. Mayor et al. VISTA: Visualizing global DNA
sequence alignments of arbitrary length. Bioinfor-
matics, 16:1046–1047, 2000. Application Note.

[22] Shinichi Miyata et al. Two different thymidylate ki-
nase gene homologues, including one that has cat-
alytic activity, are encoded in the onion yellows phy-
toplasma genome. Microbiology, 149:2243–2250,
2003.

[23] Tamara Munzner et al. TreeJuxtaposer: Scalable
tree comparison using Focus+Context with guaran-
teed visibility. SIGGRAPH, pages 453–462, 2003.

[24] W. J. Murphy et al. Resolution of the early placen-
tal mammal radiation using Bayesian phylogenetics.
Science, 294(5550):2348–51, 2001.

[25] K. Oshima et al. Reductive evolution suggested
from the complete genome sequence of a plant-
pathogenic phytoplasma. Nature Genetics, 2004. In
press.

[26] K. Rice, M. Donoghue, and R. Olmstead. Analyz-
ing large data sets: rbcL 500 revisited. Syst. Biol.,
46:554–562, 1997.

[27] George Robertson, Stuart Card, and Jock Mackin-
lay. The cognitive coprocessor architecture for inter-
active user interfaces. In Proc. UIST, pages 10–18,
1989.

[28] K. Rutherford et al. Artemis: Sequence visualiza-
tion and annotation. Bioinformatics, 16(10):944–5,
2000. Application Note.

[29] Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky,
and Steven P. Reiss. Stretching the rubber sheet: A
metaphor for viewing large layouts on small screens.
In Proc. UIST, pages 81–91, 1993.

[30] T. D. Schneider, G. D. Stormo, M. A. Yarus, and
L. Gold. Delila system tools. Nucl. Acids Res.,
12:129–140, 1984.

[31] Scott Schwartz et al. PipMaker: A web server for
aligning two genomic DNA sequences. Genome Re-
search, 10(4), 2000.

[32] Nameeta Shah et al. Phylo-VISTA: an interactive
visualization tool for multiple dna sequence align-
ments. Bioinformatics, 19, 2003. To appear, Appli-
cation Note.

[33] Rhazes Spell, Rachael Brady, and Fred Dietrich.
BARD: A visualization tool for biological sequence
analysis. In Proc. IEEE Symposium on Information
Visualization, pages 219–226, 2003.

[34] L.D. Stein et al. The generic genome browser:
a building block for a model organism system
database. Genome Res., 12(10):1599–610, October
2002. www.gmod.org.

[35] Praveen Thiagarajan and Guang Gao. Visualizing
biosequences using texture mapping. In Proc. IEEE
Symposium on Information Visualization, 2002.

[36] Dennis P. Wall and Joshua T. Herbeck. Evolutionary
patterns of codon usage in the chloroplast gene rbcl.
J. Mol. Evol., 56:673–688, 2003.

[37] D.L. Wheeler et al. Database resources of the Na-
tional Center for Biotechnology Information: 2002
update.

[38] Jiajie Zhang. The interaction of internal and external
representations in a problem solving task. In Proc.
13th Annual Conf. of Cog. Sci. Society. Lawrence
Erlbaum Assoc., 1991.

[39] Olga Zhaxybayeva, Lutz Hamel, Jason Raymond,
and J Peter Gogarten. Visualization of the phyloge-
netic content of five genomes using dekapentagonal
maps. Genome Biology, 5(20), 16 February 2004.

10

Figure 3: We show the 1001 bp CNR1 gene, a subset of the Murphy et al. 44-sequence dataset [24], after
exploration revealed four meaningful thresholds of differences in nucleotide site variability: 67%, 60%,
50%, and 25% from top to bottom . The columns marked at the 60% level were expanded, with a middle
region between two of them stretched out. 11

Figure 4: The complete 714 Kbp treezilla dataset [7, 26] contains 500 seed-plant rbcL sequences of
1428 bp each. The highlighted marks in the top view are at the difference threshold of 62%, which we
found after brief interactive exploration. The regions around highlighted areas are expanded, and the bottom
view shows the same scene without the red highlight marks so that the distribution of colors that represent
nucleotide type can be also seen in those vertical strips. The visible patterns of color show many of the
codon bias results described by Wall and Herbeck [36], as we describe in the main text.

12

