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Abstract. Answering a problem posed by Nakhleh, we prove that counting the number of
phylogenetic trees inferred by a (binary) phylogenetic network is #P-complete. Furthermore, we
show that counting the number of phylogenetic trees commonly inferred by two (binary) phylogenetic
networks is also #P-complete.
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1. Introduction. A fundamental problem in evolutionary biology is to repre-
sent the ancestral history of a collection of present-day species with a phylogenetic
(evolutionary) tree. In the reconstruction of such trees, maximum parsimony methods
have a long-standing history. However, recently, evolutionary biologists have become
increasingly interested in the reconstruction of phylogenetic networks since such net-
works have the potential to give a more complete picture of the evolutionary past by
including reticulation (non-tree-like) events such as hybridization and recombination.
Given this, it is natural to reconstruct phylogenetic networks with parsimony methods
that can handle with the much more complex structure of networks. To date, research
in this area has mostly focused on the so-called small maximum parsimony problem
which calculates the parsimony score for a given phylogenetic network. Introduced
by Hein [3] and formally stated by Nakhleh [8], this problem is as follows. Given a
phylogenetic network N and a character c which assigns the state of some particular
attribute to each of the species under consideration, the parsimony score of c on N is
defined to be the minimum over all “parsimony scores” of c on any rooted phyloge-
netic tree that is inferred by N . This optimization problem was shown to be NP-hard
for recombination networks [9] and also for a more restricted type of network that
fulfills certain temporal constraints [5] by establishing a polynomial-time reduction
from Minimum Set Cover and Maximum 2 Satisfiability, respectively. Both
reductions directly relate the parsimony score of a phylogenetic network N to the
solution of the problem instance from which N was constructed.

Nakhleh [13] recently posed the problem of counting the number of distinct rooted
phylogenetic trees inferred by a given phylogenetic network, a problem closely related
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to an essential subproblem of solving the small maximum parsimony problem for
networks. The main result of this paper shows that this problem is #P-complete.
This means that computing the number of distinct rooted phylogenetic trees inferred
by a phylogenetic network is as hard as computing the permanent of a matrix or
the number of Hamiltonian circuits in a graph and, thus, it is very unlikely that
there exists a polynomial-time algorithm for computing this number. For the inter-
ested reader, we remark that Kannan and Wheeler [7] have recently introduced an
alternative definition of the parsimony score of a phylogenetic network that does not
reflect the parsimony score of the best tree inferred by the network. They showed
that well-known algorithms, such as the Sankoff and Fitch algorithm (e.g., see [2]),
that efficiently calculate the maximum parsimony score for a rooted phylogenetic tree
naturally extend to networks under their definition.

Throughout the paper, X denotes a finite set. A rooted phylogenetic X-tree T is
a rooted tree in which the root has degree at least two and all other interior vertices
have degree at least three, and whose leaf set is X. In addition, T is binary if, apart
from the root which has degree two, all interior vertices have degree three. The leaf
set of T is often referred to as the label set of T and is denoted by L(T ). Since we are
only interested in rooted, and not unrooted, phylogenetic trees, we will always refer
to a rooted phylogenetic tree as a phylogenetic tree.

A phylogenetic network N on X is a rooted acyclic digraph with the following
properties:

(i) the root has out-degree two;
(ii) a vertex with out-degree zero has in-degree one, and the set of vertices with

out-degree zero is X;
(iii) all other vertices either have in-degree one and out-degree two, or in-degree

two and out-degree one.

For a phylogenetic network N , vertices with in-degree two and out-degree one are
called reticulation vertices and edges directed into a reticulation vertex are called
reticulation edges. Furthermore, vertices with out-degree zero are referred to as leaves,
and the set X is referred to as the label set ofN . Some authors refer to the phylogenetic
network described here as binary.

Let T be a phylogenetic X-tree and let N be a phylogenetic network on X. We
say that N displays T if T can be obtained from N by deleting edges and vertices, and
contracting vertices of degree two. Intuitively, T is displayed by N if the ancestral
information inferred by T is also inferred by N . Note that all phylogenetic trees
displayed by N are binary. For ease of reading, if we say that a phylogenetic tree is
displayed by a phylogenetic network without reference to the label sets, then we will
assume that these sets are identical.

Our interest in this paper is in counting the number of phylogenetic X-trees
displayed by a given phylogenetic network N on X. In particular, we are interested
in the following counting problem:

#Trees in a Phylogenetic Network
Instance: A phylogenetic network on X.
Question: How many phylogenetic X-trees are displayed by N ?
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If N has r reticulation vertices, then it displays at most 2r phylogenetic X-trees
(e.g., see [6]). Here each phylogenetic tree is essentially obtained by deleting, for each
reticulation vertex, exactly one of its incident reticulation edges. However, this is
simply an upper bound and there is no difficulty in finding instances for which this
bound is not sharp. The main result of this paper is Theorem 1.1 which shows that
the above counting problem is computationally hard.

Theorem 1.1. Computing #Trees in a Phylogenetic Network is #P-
complete.

Clearly, the result of Theorem 1.1 generalizes to counting all phylogenetic trees
that are displayed in a phylogenetic network where vertices may have higher in-degree
or out-degree. We remark here that an associated decision problem is NP-complete.
In particular, for a given binary phylogenetic X-tree T and phylogenetic networkN on
X, determining whetherN displays T is an NP-complete problem [6]. Indeed, it is also
NP-complete for when N is restricted to various types of phylogenetic networks [4].

A problem closely related to #Trees in a Phylogenetic Network is the
following counting problem.

#Common Trees Between Two Phylogenetic Networks
Instance: Two phylogenetic networks N1 and N2 on X.
Question: How many common phylogenetic X-trees are displayed by N1 and N2?

Again this problem is computationally hard as stated in Theorem 1.2. Perhaps this
is not so surprising given Theorem 1.1. However, the proof of this theorem is much
simpler than that of Theorem 1.1, and we do not see how it can be used to directly
prove Theorem 1.1.

Theorem 1.2. Computing #Common Trees Between Two Phylogenetic
Networks is #P-complete.

The rest of this section contains some preliminaries including the counting prob-
lem which we use for our reductions to establish Theorems 1.1 and 1.2. The proofs of
these theorems are given in Sections 2 and 3, respectively.

Let T be a phylogenetic X-tree. A pair of leaves {a, b} of T is a cherry if a
and b are adjacent to a common vertex of T . Now let (x1, x2, . . . , xn) be an n-tuple.
A phylogenetic tree T is the caterpillar on (x1, x2, . . . , xn) if the leaf set of T is
{x1, x2, . . . , xn} and the following properties are satisfied:

(i) {x1, x2} is the only cherry of T and
(ii) for each i ∈ {2, . . . , n− 1}, the parent of xi is a child of the parent of xi+1.

We next describe the counting problem that we use for our reductions. A matching
of a graph G = (V,E) is a subset M of E such that no two edges in M are incident with
a common vertex in G. A matching M is perfect if every vertex in V is incident with
an edge in M . A graph is 3-regular if the degree of each vertex is three. Dagum and
Luby [1, Theorem 6.2] showed that the following counting problem is #P-complete.

#Perfect Matchings in 3-Regular Bipartite Graphs
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Fig. 1.1. A phylogenetic network N reconstructed from an instance G = (VA ∪ VB , E) of
#Perfect Matchings in 3-Regular Bipartite Graphs with {{aj′ , bj}, {aj′′ , bj}, {aj′′′ , bj}} ⊂ E.
Since each ai ∈ VA is adjacent to three vertices in VB, each of the three “dangling” edges associated
with ai is paired with a “dangling” reticulation edge in the bottom part of the figure. The actual
pairing depends on the elements in E.

Instance: A 3-regular bipartite graph G.
Question: How many perfect matchings are in G?

For the rest of the paper, we will take G = (VA∪VB , E) to be an instance of #Per-
fect Matchings in 3-Regular Bipartite Graphs, where VA = {a1, a2, . . . , ak}
and VB = {b1, b2, . . . , bk}. We may assume that |VA| = |VB |; otherwise the number
of perfect matchings in G is zero. Furthermore, for each j ∈ {1, 2, . . . , k}, we denote
the vertices in VA that are adjacent to bj by aj′ , aj′′ , aj′′′ .

Given G, construct a phylogenetic networkN as follows. Start with the caterpillar
on (x, y, a1, a2, . . . , ak), where x and y are new labels not in VA ∪ VB . In turn, for
each j ∈ {1, 2, . . . , k}, adjoin bj to the caterpillar by first adding an edge joining bj

and the pendant edge incident with aj′ , then adding an edge joining the pendant edge
incident with bj and the pendant edge incident with aj′′ , and lastly adding an edge
joining the pendant edge incident with bj and the pendant edge incident with aj′′′ .
Note that the order in which the elements in VB are chosen is irrelevant as is the order
in which the elements adjacent to bj in G are chosen. The construction of N from G
is illustrated in Figure 1.1.

2. Proof of Theorem 1.1. The overall strategy of the proof is to take the
instance G = (VA ∪ VB , E) of #Perfect Matchings in 3-Regular Bipartite
Graphs, construct the phylogenetic network N , and then incrementally extend N
to a new phylogenetic network k times. The number of phylogenetic trees displayed
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z3z2z1 zt−1 ztx

Fig. 2.1. A caterpillar chain of length t.

by N , and the number of each of the incremental extensions can be written in terms
of the Fibonacci numbers. Using an oracle that counts the number of phylogenetic
trees displayed by a phylogenetic network and facts about the Fibonacci numbers,
one can recover the number of phylogenetic trees displayed by N of a certain type.
This last number is the number of perfect matchings of G. The general technique of
incremental extensions and relating it to the Fibonacci numbers is due to Vadhan [12].

To begin the proof of Theorem 1.1, consider the phylogenetic network shown in
Figure 2.1, where t ≥ 1. We call such a network a caterpillar chain of length t. We
refer to the leaf labeled x as the tail while all other leaves are referred to as chain
leaves. The chain leaves are ordered, in this case the ordering is (z1, z2, . . . , zt). A
caterpillar chain of length t has t− 1 reticulation vertices.

Now, let N0 be the phylogenetic network N constructed from the instance of
#Perfect Matchings in 3-Regular Bipartite Graphs as described at the end
of Section 1. For each s ∈ {1, 2, . . . , k}, let Ns denote the phylogenetic network
obtained from N0 by “attaching” k caterpillar chains of length s + 1. In particular,
for each leaf ai with i ∈ {1, 2, . . . , k} in N0, we attach a caterpillar chain with tail x
and whose chain leaves are ordered (ai, a

1
i , a

2
i , . . . , a

s
i ) by identifying the leaves x and

ai with their namesakes in N0, and identifying certain edges with certain paths in N0.
An illustration of which edges and which paths are identified is shown in Figure 2.2,
where the bold edges show the attachment of the caterpillar chain whose chain leaves
are ordered (aj′ , a1

j′ , a2
j′ , . . . , as

j′).

We next establish some preliminary results, which in turn require further defini-
tions. Let T be a phylogenetic tree displayed by Ns, where s ∈ {0, 1, 2, . . . , k}, and
let ai be an element of VA. Relative to T , we say that ai is paired if ai is in a cherry
in T with an element in VB . Note that each ai is paired precisely if each bj belongs to
a cherry. The first two lemmas are straightforward consequences of the construction;
their proofs are omitted.

Lemma 2.1. Let T be a phylogenetic tree displayed by Ns, where s ∈ {0, 1, 2, . . . , k}.
If each element in VA is paired in T , then the collection{

{ai, bj} : {ai, bj} is a cherry of T , where ai ∈ VA and bj ∈ VB

}
is the collection of edges of a perfect matching M of G.

The converse of Lemma 2.1 also holds.

Lemma 2.2. Let M be a perfect matching in G. Then, for each s ∈ {0, 1, 2, . . . , k},
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Fig. 2.2. The phylogenetic network Ns obtained from the phylogenetic network that is shown
in Figure 1.1. In particular, Ns is obtained by replacing each of the leaves a1, a2, . . . , ak with a
caterpillar chain of length s + 1. Bold edges indicate one such caterpillar chain. For simplicity, we
have omitted some parts of the phylogenetic network shown in Figure 1.1.

there is a phylogenetic tree T displayed by Ns such that, for each edge {ai, bj} in M
with ai ∈ VA and bj ∈ VB, there exists a cherry {ai, bj} in T .

Now, for some s ∈ {0, 1, . . . , s}, let T ′ be a phylogenetic tree displayed by Ns and
let T be a phylogenetic tree displayed by N0. We say that T ′ is an extension of T
in Ns if, up to contracting degree two vertices, the minimal subtree of T ′ connecting
the elements in L(T ) is isomorphic to T . Furthermore, for all t ≥ 1, let wt denote the
number of phylogenetic trees displayed by a caterpillar chain of length t. For t = 0,
set w0 = 1.

Lemma 2.3. Let T be a phylogenetic tree displayed by N0 and let s ∈ {1, 2, . . . , k}.
Then the number of ways that T can be extended to a phylogenetic tree in Ns is
(ws)p(ws+1)k−p, where p is the number of elements of VA paired in T .

Proof. It is easily seen that if an element, ai say, of VA is paired in T , then T
can be extended with any phylogenetic tree displayed by the caterpillar chain whose
leaf set of chain leaves is {a1

i , a
2
i , . . . , a

s
i}. On the other hand, if ai is not paired in T ,

then T can be extended with any phylogenetic tree displayed by the caterpillar chain
whose leaf set of chain leaves is {ai, a

1
i , a

2
i , . . . , a

s
i}. As the caterpillar chains in Ns act

independently of each other, we deduce the lemma by multiplying over all elements
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in VA.

Let tp denote the number of phylogenetic trees displayed by N0 in which ex-
actly p elements of VA are paired. By construction, the next lemma is an immediate
consequence of Lemma 2.3.

Lemma 2.4. For each s ∈ {0, 1, 2, . . . , k}, the phylogenetic network Ns displays
exactly

k∑
p=0

tp(ws)p(ws+1)k−p

phylogenetic trees.

Lemma 2.5. The number wt of phylogenetic trees displayed by a caterpillar chain
of length t is equal to the number of matchings in a path of t vertices.

Proof. Let Ct be a caterpillar chain of length t whose chain leaves are ordered
(d1, d2, . . . , dt). It is easily seen that each phylogenetic tree that is displayed by Ct is
a caterpillar in which some (possibly none) of the leaves are replaced with a cherry.
Furthermore, if T is such a tree, then the collection of cherries of T is a subset of{

{d1, d2}, {d2, d3}, . . . , {dt−1, dt}
}
.

Now let P = d1d2 · · · dt be a path of t vertices. If M is a matching of P , then M
is a subset of {

{d1, d2}, {d2, d3}, . . . , {dt−1, dt}
}
.

Therefore, if T is a phylogenetic tree displayed by Ct, then the cherries of T are the
edges of a matching of P . Thus, the number of such trees is at most the number of
matchings of P . Moreover, if M is a matching of P , then it is easily seen that M is
the collection of cherries of a phylogenetic tree displayed by Ct. Hence the number
of such matchings is at most the number of phylogenetic trees displayed by Ct. The
lemma now follows.

The next lemma is established in [12, Lemma 6.3]. Recall that the n-th Fibonacci
number, denoted Fn, is given by the recursion F0 = F1 = 1 and Fn+2 = Fn+1 + Fn

for all n ≥ 0.

Lemma 2.6. For all n ≥ 1, the number of matchings in a path of n vertices is
Fn. Moreover, for all n ≥ 0, the ratio Fm/Fm+1 6= Fn/Fn+1 for all m 6= n.

We now complete the proof of our main result.

Proof. [Proof of Theorem 1.1] To show that #Trees in a Phylogenetic Net-
work is in #P, let N be a given instance of the problem and let T be a phylogenetic
X-tree. Let D be a binary decision tree, where each level corresponds to a distinct
reticulation vertex of N and where the branching at a vertex corresponds to the two
possible deletions of a single reticulation edge incident with the reticulation vertex for
that level. Hence, each tree displayed by N is associated with at least one leaf of D.
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Using D, one can verify whether N displays T non-deterministically in polynomial
time. Thus, #Trees in a Phylogenetic Network is in #P. We next show that
it is #P-complete.

Using an oracle that can compute the answer to an instance of #Trees in a
Phylogenetic Network in polynomial time, we can determine the value of

k∑
p=0

tp(ws)p(ws+1)k−p,

the number of phylogenetic trees displayed by Ns, for each s ∈ {0, 1, 2, . . . , k}, in
polynomial time. This takes k + 1 oracle calls. Furthermore, by Lemmas 2.5 and 2.6,
ws is the s-th Fibonacci number and, thus, can be computed in polynomial time (e.g.,
see [11]). Dividing through by (ws+1)k, we obtain the evaluations

p(ws/ws+1) =
k∑

p=0

tp

(
ws

ws+1

)p

of the polynomial

p(x) =
k∑

p=0

tpx
p

at the points ws

ws+1
for each s ∈ {0, 1, . . . , k}. Now, by Lemma 2.6, the points ws

ws+1
are

distinct and so, by [12, Fact 5.1], we can recover the coefficients of p(x) in polynomial
time. In particular, we can recover the coefficient tk, the number of phylogenetic trees
displayed by N0 in which each element of VA is paired. By Lemmas 2.1 and 2.2, tk is
also the number of perfect matchings in G. Since the time to construct Ns and the
size of Ns for each s ∈ {0, 1, . . . , s} is polynomial in the size of G, it now follows that
computing #Trees in a Phylogenetic Network is #P-complete.

3. Proof of Theorem 1.2. For the purposes of the proof of Theorem 1.2, now
let NA denote the phylogenetic network N constructed from the instance G of #Per-
fect Matchings in 3-Regular Bipartite Graphs at the end of Section 1. Fur-
thermore, let NB denote the phylogenetic network that is constructed in the same
way as NA but with the roles of the vertex sets VA and VB interchanged. Note that
the leaf sets of NA and NB are identical.

Let v be a vertex of a phylogenetic X-tree T . The subset of X whose members
are precisely the descendants of v contained in X is the cluster of T corresponding to
v. It is well known (for example, see [10]) that no two distinct phylogenetic X-trees
have exactly the same collection of clusters.

Lemma 3.1. Let {I, J} = {A, B} and let T be a phylogenetic tree displayed by
NI . Then T has precisely one of the following two mutually exclusive properties:

(i) every element in VI is paired with an element in VJ ; or
(ii) there exists a cluster C such that |VI ∩ C| = 1 and |VJ ∩ C| ≥ 2.
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Proof. It is easily seen that if an element in VI is not paired with an element
in VJ , then (ii) holds. Conversely, if (ii) does not hold, then every element in VI is
paired with an element in VJ .

Proof. [Proof of Theorem 1.2] To see that #Common Trees Between Two
Phylogenetic Networks is in #P, let N1 and N2 be a given instance of the
problem and let T be a phylogenetic X-tree. For i ∈ {1, 2}, let Di be a binary
decision tree, where each level corresponds to a distinct reticulation vertex of Ni and
where the branching at a vertex corresponds to the two possible deletions of a single
reticulation edge incident with the reticulation vertex for that level. Using Di, one can
verify whether Ni displays T , and therefore whether both N1 and N2 display T , non-
deterministically in polynomial time. It follows that #Common Trees Between
Two Phylogenetic Networks is in #P.

Next, we show that the problem is #P-complete. By Lemma 3.1, if a phylogenetic
tree is displayed by both NA and NB , then it has the property that every element
in VA is paired with an element in VB . By construction, such a phylogenetic tree
is displayed by NA if and only if it is displayed by NB . Hence the collection of
phylogenetic trees displayed by NA and NB is precisely the collection of phylogenetic
trees displayed by NA in which every element in VA is paired with an element in VB .
By construction, it is easily seen that the size of this collection is precisely the number
of perfect matchings in G. This completes the proof of the theorem.

Acknowledgements: We thank Dominic Welsh for helpful discussions.
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