
A Reduction Algorithm for Computing the

Hybridization Number of Two Trees

Magnus Bordewich1, Simone Linz2,3, Katherine St. John4,

and Charles Semple2

1 Department of Computer Science, Durham University, Durham DH1 3LE,

United Kingdom.

2 Biomathematics Research Centre, Department of Mathematics and Statis-

tics, University of Canterbury, Christchurch, New Zealand.

3 Department of Bioinformatics, Heinrich-Heine-University, Düsseldorf, Ger-

many.

4 Department of Mathematics and Computer Science, Lehman College, City

University of New York, USA.

Correspondence: Simone Linz, Biomathematics Research Centre, Depart-

ment of Mathematics and Statistics, University of Canterbury, Private Bag

4800, Christchurch, New Zealand, Tel.: +64 (0)3 3642600, Email: linz@cs.uni-

duesseldorf.de

Running head: A Reduction Algorithm for Hybridization

1



Key words: hybridization networks, reticulate evolution, agreement forest

1 Abstract

Hybridization is an important evolutionary process for many groups of species.

Thus, conflicting signals in a data set may not be the result of sampling or

modeling errors, but due to the fact that hybridization has played a sig-

nificant role in the evolutionary history of the species under consideration.

Assuming that the initial set of gene trees is correct, a basic problem for biol-

ogists is to compute the minimum number of hybridization events to explain

this set.

In this paper, we describe a new reduction-based algorithm for comput-

ing this minimum number for when the initial data set consists of two trees.

Although the two-tree problem is NP-hard, our algorithm always gives the

exact solution and runs efficiently on many real biological problems. Previ-

ous algorithms for the two-tree problem either solve a restricted version of

the problem or give an answer with no guarantee of the closeness to the exact

solution. We illustrate our algorithm on a grass data set.

This new algorithm is freely available for application at either http://www.

bi.uni-duesseldorf.de/∼linz or http://www.math.canterbury.ac.nz/∼cas83.
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2 Introduction

Evolutionary (phylogenetic) trees are used to represent the tree-like evolution

of a collection of present-day species. For many groups of taxa (for example,

most mammals), this is an appropriate representation. However, because of

non-tree-like evolutionary processes such as hybridization, horizontal gene

transfer, and recombination, not all groups of taxa are suited to this type of

representation. Collectively referred to as reticulation events, these processes

result in species that are a mixture of DNA regions derived from different

ancestors.

In the following, we restrict our attention to hybridization. During such

an event, two lineages recombine to create a new species which may have

the same number of chromosomes as its parents (diploid hybridization) or

the sum of all parental chromosomes (polyploid hybridization). Eukary-

otes whose evolutionary past contains hybridization include certain groups

of plants, birds, and fish (see Mallet, 2005).

The effect of hybridization in evolution has been recognized for quite

some time. For example, since the 1930’s, botanists have suggested that

the morphological variation in the New Zealand flora is due to hybridiza-

tion (Allan, 1961). However, the computational task of determining how

much hybridization has occurred has been a much more recent considera-

tion. In regards to this task, a fundamental problem for biologists studying

the evolution of species whose past includes hybridization is the following:
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given a collection of rooted phylogenetic trees on sets of species that correctly

represents the tree-like evolution of different parts of their genomes, what is

the smallest number of hybridization events needed to explain the evolution

of the species under consideration. As well as providing a lower bound on

the number of such events, this smallest number also provides an indicator

of the extent to which hybridization has influenced the evolutionary history

of the considered collection of present-day species.

Formalized mathematically, this fundamental problem is NP-hard even

when the initial collection consists of two rooted binary phylogenetic trees

(Bordewich and Semple, 2007a). Consequently, as a result of this computa-

tional difficulty, most current research considers the two-tree problem. There

are now several algorithms for approaching this latter problem. However,

all of these algorithms are either algorithms solving a restricted version of

the problem (e.g. Hallett and Lagergren, 2001; Huson et al., 2005; Nakhleh

et al., 2005b) or polynomial-time heuristics with no guarantee of the close-

ness of their solution (e.g. Nakhleh et al., 2005a).

In this paper, we describe a new, and recently implemented, exact algo-

rithm for solving the two-tree problem (with no restrictions) based on three

reductions that preserve the amount of hybridization. All of these reduc-

tions make use of similarities between the two trees. It has recently been

shown that two of the reductions are enough to guarantee that the algorithm

is fixed-parameter tractable, where the parameter is the smallest number of

hybridizations to explain the initial two trees (Bordewich and Semple, 2007b).
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This means that the algorithm runs efficiently when this smallest number is

bounded. The remaining reduction allows for a divide-and-conquer approach

when the two trees share common clusters.

The new algorithm described in this paper has been implemented in Perl

and is available for application at http://www.bi.uni-duesseldorf.de/∼linz

and http://www.math.canterbury.ac.nz/∼cas83. As the implementation re-

quires the two input trees to be given in a special type of string format, the

interested reader can also download two sample trees and a short manual de-

scribing how to use the software. The program output contains the simplified

trees after applying the three reductions (see Section 3.1) and the minimum

number of hybridization events to explain the two initial trees.

The notation and terminology in this paper follows Semple and Steel

(2003). The paper is organized as follows. In the next section, we formalize

the problem, describe the three reductions, and outline the algorithm. As

the two-tree problem is NP-hard, there are going to be some instances for

which the algorithm will not return an answer in a reasonable time—in par-

ticular, instances that have a high level of hybridization and few similarities.

Nevertheless, there are many instances for which the algorithm performs ex-

ceptionally well. In terms of their running time, a full range of instances are

highlighted in Section 4 where we apply the algorithm to a grass (Poaceae)

data set which consists of sequence data for six genetic loci and six corre-

sponding gene trees. Each of the 15 different pairs of trees are considered.
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Full details of the algorithm described in this paper can be found in the

Appendix, where a pseudocode version is given. The algorithm is a com-

bination of the fixed-parameter result described in Bordewich and Semple

(2007b) (whose proof of correctness is given by Proposition 3.2 of that pa-

per) and the cluster reduction described in Baroni et al. (2006) (whose proof

of correctness is given by Theorem 1 in that paper). The cluster reduction

also appeared in Baroni (2004). For simplicity, in this paper we only describe

the main ideas. For the reader interested in the finer details, we refer them

to the original papers.

3 Reduction Algorithm for Hybridization

We begin with a formal description of the two-tree problem. A rooted binary

phylogenetic X-tree T is a rooted tree that has leaf set X and whose root has

degree two while all other interior vertices have degree three. A cluster of T

is a subset of X that contains precisely the elements that are descendants of

some vertex of T .

A rooted acyclic digraph is a digraph with no directed cycles. Each such

digraph has a distinguished vertex ρ whose in-degree is zero and has the

property that there is a directed path from ρ to every other vertex. For

a vertex v in a digraph, we will denote the in-degree of v (the number of

edges directed into v) by d−(v) and the out-degree of v (the number of edges

directed out of v) by d+(v). A hybridization network H on X is a rooted
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Figure 1. Two rooted binary phylogenetic trees S and T and two hybridiza-

tion networks H1 and H2 which explain both trees.

acyclic digraph with root ρ in which

(i) X is the set of vertices of out-degree zero,

(ii) d+(ρ) ≥ 2, and

(iii) for all other vertices v, d−(v) ∈ {1, 2}, and no vertex v has d−(v) = 1

and d+(v) = 1.

To illustrate these concepts, two rooted binary phylogenetic trees S and T

are shown in Figure 1, while two hybridization networks H1 and H2 are

shown in the same figure. In all cases, X = {a, b, c, d}.

Analogous to rooted binary phylogenetic X-trees, hybridization networks

on X can be used to represent the ancestral history of a collection of present-

day species that also includes hybridization. The set X represents the collec-

tion of present-day species. Vertices of in-degree two represent an exchange of
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genetic information between hypothetical ancestors. These vertices are called

hybridization vertices. To quantify the number of hybridization events, the

hybridization number of a hybridization network H, denoted h(H), is the

number of hybridization vertices. In Figure 1, h(H1) = 4 and h(H2) = 2,

respectively. Note that hybridization vertices need not always appear at the

‘tips’ of a network. Furthermore, observe that rooted binary phylogenetic

trees are special types of hybridization networks. As one would expect, the

hybridization number of such a tree is zero.

Let T be a rooted binary phylogenetic X-tree and let H be a hybridiza-

tion network on X. We say that H explains T if all of the ancestral relation-

ships described in T are covered by H. Mathematically speaking, H explains

T if T can be obtained from H by deleting a subset of the edges of H to-

gether with any resulting isolated vertices and suppressing any degree-two

vertex. For example, both H1 and H2 explain each of S and T in Figure 1.

For two rooted binary phylogenetic X-trees S and T , let h(S, T ) denote the

smallest number of hybridization vertices over all hybridization networks that

simultaneously explain S and T . Referring to Figure 1, it is easily checked

that at least two hybridization events are needed to explain S and T . Since

h(H2) = 2, it follows that h(S, T ) = 2. Given two rooted binary phylogenetic

X-trees S and T , the two-tree problem is to find h(S, T ). For convenience,

we refer to this problem as the Hybridization Number problem.

Called HybridNumber, the new algorithm described in this paper finds

the solution to Hybridization Number. We briefly describe next a com-
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binatorial characterization of h(S, T ). This characterization underlies Hy-

bridNumber. Loosely speaking, a forest of S (or T ) is a collection of non-

overlapping rooted subtrees of S (or T ) whose (disjoint) union of leaf sets is

X. An agreement forest F of S and T is a forest of both S and T . Beginning

with a hybridization network that explains S and T , one way to obtain an

agreement forest for S and T is by deleting each of the edges coming into

every hybridization vertex. Biologically, the deleted edges correspond to dif-

ferent paths of genetic inheritance. Thus, the fewer hybridization vertices of

such a network, the smaller the size of the resulting agreement forest for S

and T , where the size of a forest is the number of trees in the forest. On the

other hand, if we are given an agreement forest for S and T , then one can

reverse this process to construct a hybridization network H that explains S

and T provided the forest has a particular acyclicity property. This property

excludes the possibility of circular inheritance which means that a vertex inH

does not inherit genetic information from its own descendants, in which case

H contains no directed cycles. An agreement forest with the acyclicity prop-

erty is called acyclic. Theorem 2 of Baroni et al. (2005) showed that h(S, T )

is one less than the minimum size of an acyclic-agreement forest for S and T .

The algorithm HybridNumber is based on the repeated use of three

polynomial-time reduction rules. Essentially, each of these rules preserves

the hybridization number in some way. The first two rules, ‘subtree’ and

‘chain’ reduction, reduce the size of the problem instance, while the third

rule, ‘cluster’ reduction breaks the problem into a number of smaller and

more tractable problems. An exhaustive search part on each of the smaller
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Figure 2. Two rooted binary phylogenetic trees S and T reduced under the

subtree reduction rule. The triangle A indicates a maximal subtree which is

common to both trees and this is replaced by the new leaf labeled a in S ′

and T ′.

problems completes the algorithm. While it is likely that the general problem

HybridNumber has no polynomial-time solution, it would be interesting to

see how one could speed up the last part of the algorithm.

3.1 Reductions

In this subsection, we describe the three reductions and their effect on com-

puting h(S, T ) for two rooted binary phylogenetic X-trees S and T . The

reductions are illustrated in Figures 2, 3, and 4, respectively. Pseudocode for

each of the three reduction rules can be found in the Appendix.

1. Subtree reduction. Replace a maximal pendant subtree with at least

two leaves that occurs identically in S and T by a single leaf with a
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Figure 3. Two rooted binary phylogenetic trees S and T reduced under the

chain reduction rule.

new label. If S ′ and T ′ denote the resulting trees, then

h(S, T ) = h(S ′, T ′).

2. Chain reduction. Replace a maximal chain of at least three leaves that

occur identically and with the same orientation relative to the root in

S and T by two new leaves with new labels, a and b say, correctly

orientated to preserve the direction of the chain. If the chain consists

of n leaves, then assign the pair {a, b} of new leaves weight n− 2. If S ′

and T ′ denote the resulting trees, then either

h(S, T ) = h(S ′, T ′)

or

h(S, T ) = h(S ′, T ′) + (n− 2)

depending on whether a minimum-size acyclic-agreement forest for S ′

and T ′ has the property that a and b are in the same subtree or
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not, respectively. In the case a and b are not in the same subtree,

a and b are isolated vertices in the minimum-size acyclic-agreement

forest (Bordewich and Semple, 2007b). The effect of this is that, in a

minimum-size acyclic-agreement forest for S and T , each of a1, a2, . . . , an

are isolated. The purpose of the weighting is to keep track of the num-

ber of such vertices when a and b are isolated.

There is a slight complication here in that the reducing chain may

contain consecutive pairs of leaves that have previously been involved

in a chain reduction. In such cases, the pair {a, b} of new leaves is as-

signed a weight that is the sum of the associated weights of these pairs

and n − 2. The effect on h(S, T ) is a generalization of the previous

outcome.

3. Cluster reduction. If A is a minimal cluster common to S and T and

with at least two leaves, then replace S and T with two pairs of new

trees. The first pair, S1 and T1 say, are the subtrees of S and T whose

leaf set is A, while the second pair, S2 and T2 say, are obtained from S

and T by replacing the subtrees whose leaf set is A with a new label.

The point of this is that

h(S, T ) = h(S1, T1) + h(S2, T2).

Remarks.

(i) The fact that the cluster reduction rule, and consequently the sub-

tree reduction rule, preserve the number of hybridization events in the

way described above is shown by Theorem 1 of Baroni et al. (2006).

Furthermore, the correctness of the chain reduction rule follows from
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Figure 4. Two rooted binary phylogenetic trees S and T divided under the

cluster reduction rule. The hybridization number of S and T is the sum of

the hybridization numbers of S1 and T1, and S2 and T2.

Proposition 3.2 of Bordewich and Semple (2007b).

(ii) Bordewich and Semple (2007b) showed that the subtree and chain re-

ductions by themselves are enough to ‘kernelize’ the problem and give a

fixed-parameter algorithm for Hybridization Number. The cluster

reduction provides an extremely useful tool for breaking the problem

into a number of smaller problems—all that is required is that the sub-

trees have identical leaf sets, the topologies of the two subtrees can be

completely different.

(iii) Without going into details, the cluster reduction has a similar flavor

to the “Decomposition Theorem” in Huson et al. (2005). This the-

orem describes a one-to-one correspondence between the overlapping

cycles of an (unrooted) network N , the connected components of the

incompatibility graph of the splits generated by N , and the netted
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components of the splits graph of the splits generated by N . However,

while this theorem yields an algorithm for minimizing the number of

hybridization vertices amongst a restricted class of networks, it is im-

portant to note that it does not give a general strategy for minimizing

this number amongst all hybridization networks as there is no guar-

antee that such a reduction leads to an optimal solution. In contrast,

Baroni et al. (2006) (also see Baroni, 2004) showed that such a strategy,

in particular the cluster reduction, works for two trees. It is an inter-

esting open problem whether this extends to more than two trees. An

analogous problem has also been posed by Gusfield and Bansal (2005)

within the framework of population genetics.

Using the three reduction rules, the algorithm HybridNumber initially

attempts to reduce the size of the problem instance as much as possible. It

begins by repeatedly applying the subtree reduction where possible before

applying the chain reduction in the same way. Once this is done, it finds the

smallest common cluster of size at least two of the resulting trees and uses

this cluster to perform a cluster reduction, thus replacing the pair of subtree-

and-chain-reduced trees with two smaller pairs of trees. Putting aside the

pair of trees corresponding to the common cluster, the algorithm now repeats

this process for the other pair of trees. Eventually, no more reductions are

possible and we are left with pairs of trees for which we exhaustively find each

of their hybridization numbers. Because of the combinatorial characteriza-

tion mentioned earlier, up to the weightings resulting from a chain reduction,

this exhaustive process finds an acyclic-agreement forest of smallest size for
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each pair of trees. The sum of these sizes gives the hybridization number of

the initial two trees.

4 The Grass (Poaceae) Data Set

In this section, we describe an application of HybridNumber to a grass

(Poaceae) data set. This data set was provided by the Grass Phylogeny Work-

ing Group (2001). Although the extent of hybridization is still discussed con-

troversially (Rieseberg et al., 2003), the occurrence of such events in certain

groups of plants is generally accepted. In 1996, Ellstrand et al. examined

the frequency of spontaneous hybridization in five biosystematic floras and

found that, in four of these floras, the Poaceae family is among the six fam-

ilies with the highest number of natural hybrids. Therefore, it is more likely

that the conflicting signals in the data are due to hybridization rather than

other factors and so it is an appropriate data set for our purposes.

The Poaceae data set consists of sequence data for six different genetic

loci: internal transcribed spacer of ribosomal DNA (ITS ); NADH dehydro-

genase, subunit F (ndhF ); phytochrome B (phyB); ribulose 1,5-biphosphate

carboxylase/oxygenase, large subunit (rbcL); RNA polymerase II, subunit β ′′

(rpoC2 ); and granule bound starch synthase I (waxy). A summary describ-

ing the sequence origin, the number of sequences, and the alignment length

for each gene in the data set is given in Table 1.
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Table 1. The Poaceae data set.

loci sequence origin # sequences alignment length

ITS nucleus 47 322

ndhF chloroplast 65 2210

phyB nucleus 40 1182

rbcL chloroplast 37 1344

rpoC2 chloroplast 34 777

waxy nucleus 19 773

For each loci, a rooted binary phylogenetic tree was reconstructed using

the fastDNAmL program (Olsen et al., 1994). These gene trees were supplied

by Heiko Schmidt who has previously analyzed this data set (Schmidt, 2003).

We (separately) applied HybridNumber to each of the 15 different pairwise

combinations of gene trees, where, for each combination, we restricted the

gene trees to taxa common to both. The size of the overlapping taxa set for

each combination is given in the second column of Table 2.

Before detailing the contents of Table 2, we describe one particular ap-

plication of HybridNumber that highlights the extent to which the reduc-

tions incorporated in HybridNumber can reduce the size of the problem

instance. This application involves the two phylogenetic trees of the chloro-

plast sequence phytochrome B (phyB) and the nuclear sequence of the inter-

nal transcribed spacer of ribosomal DNA (ITS ) which have an overlapping

taxa set of 30 present-day species (see the row indicated by the gray back-

ground in Table 2). These two trees with the restricted taxa set are shown
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Table 2. Results for the Poaceae data set.

pairwise combination # taxa hybridization

number

run

timea

ndhF phyB 40 14 11 h

ndhF rbcL 36 13 11.8 h

ndhF rpoC2 34 12 26.3 h

ndhF waxy 19 9 320 s

ndhF ITS 46 at least 15 2 d

phyB rbcL 21 4 1 s

phyB rpoC2 21 7 180 s

phyB waxy 14 3 1 s

phyB ITS 30 8 19 s

rbcL rpoC2 26 13 29.5 h

rbcL waxy 12 7 230 s

rbcL ITS 29 at least 9 2 d

rpoC2 waxy 10 1 1 s

rpoC2 ITS 31 at least 10 2 d

waxy ITS 15 8 620 s

arun time on a 2000 MHz CPU, 2 GB RAM machine measured in seconds (s), hours

(h), and days (d), respectively

in Figure 5. To enable a reader-friendly presentation of both trees, we have

replaced the correct species names by numbers.

Taking the two trees in Figure 5 as input to HybridNumber, the algo-

rithm initially finds all maximal pendant subtrees that are common to both

trees (indicated by small boxes in Figure 5) and replaces each such subtree

17
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Figure 5. The input to HybridNumber for the combination phyB and

ITS . Restricting to overlapping taxa, the tree resulting from the nuclear

sequence ITS is on the left, while the tree resulting from the chloroplast

sequence phyB is on the right. Labels in boxes denote the eight maximal

pendant subtrees that are common to both trees, and the brace denotes a

maximal chain once we have applied the subtree reductions.

with a single leaf whose label is a concatenation of the subtree labels. Here

there are eight such subtrees. Next, HybridNumber checks for any iden-

tical chains of leaves in the two resulting trees. There is one such maximal

chain of leaves and this is denoted by the brace in Figure 5. Applying the

chain reduction, the labeling of the species which has evolved first is kept,

while the labels of all other chain leaves are concatenated. The two trees

resulting from the subtree and chain reductions are shown in Figure 6.
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Figure 6. The two resulting phylogenetic trees (left: ITS , right: phyB) after

repeated applications of the subtree reduction and then the chain reduction

to the two trees in Figure 5. The three brackets A, B, and C indicate common

clusters.

In the next step, the cluster reduction rule divides the problem into two

smaller problems by searching for a minimal cluster of size at least two that

is common to both trees in Figure 6. The first such cluster, shown by square

bracket A in Figure 6, is {(9), (12, 16), (3, 5, 29), (4), (15, 19), (20), (1)} and

the corresponding subtrees are shown at the top of Figure 7. At this point,

HybridNumber has completed one iteration. Beginning with the two trees

that result from replacing the cluster shown by A with a single new leaf (a

concatenation of the leaves in the cluster), the algorithm performs two fur-

ther iterations. At the end of these two iterations, we obtain two more pairs

of trees as indicated by the square brackets B and C in Figure 6. These two

pairs are shown in Figure 7. At this stage, the original inputted trees have
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Figure 7. The three pairs of clusters A, B, and C corresponding to Figure 6

for which HybridNumber (separately) calculates the minimum number of

hybridization events (left: ITS , right: phyB).

been reduced to two identical trees.

The final step in the algorithm is to exhaustively find the hybridization

number of the three pairs of non-identical trees in Figure 7. The first pair

has hybridization number 3, while the second and third pairs have hybridiza-

tion numbers of 1 and 4, respectively. Adding the three numbers together

gives the hybridization number of 8 for the two trees shown in Figure 5. The

running time of this particular application is about 19 seconds (see Table 2).
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This is remarkably quick given that the two initial trees contain 30 taxa and

the hybridization number is 8. As a comparison, we tried finding the hy-

bridization number of these two trees without the three reductions. After

one week, the algorithm was still running!

In Table 2, the results for all 15 pairs of trees are summarized. The

running times are given in days, hours, or seconds. For eight pairs, Hybrid-

Number calculates the hybridization number within a couple of minutes.

Furthermore, the hybridization numbers of all but three pairs are found

within a time span of two days. The successfully completed pairs contained

up to 40 taxa and have hybridization numbers as high as 14. Those three

pairs of trees for which the running time is given as 2 days in Table 2 are

instances of the described NP-hard problem for which the algorithm will not

return an answer in reasonable time. Nevertheless, we still have a lower

bound on their respective hybridization numbers depending upon the inter-

mediate result of the algorithm after two days at which time we stopped

the algorithm. Lastly, the difference in running times of the various pairs

is due to the extent of the reductions that we were able to use to reduce

the problem instance and their hybridization number if the reductions have

little effect. (The running time is dependent on the exhaustive search part

of the algorithm as the reductions take a matter of seconds.) However, it is

worth noting that it is always possible to reduce the number of leaves in a

pair of trees to a linear function of its hybridization number (Bordewich and

Semple, 2007b)—again highlighting the effectiveness of the reductions.
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5 Conclusion

Due to reticulate evolution, phylogenetic gene trees reconstructed for differ-

ent genetic loci often reveal conflicting tree topologies, because processes like

hybridization, horizontal gene transfer, and recombination are not tree-like.

The extent to which such events occur is of increasing interest for many evo-

lutionary studies.

In this paper, we have described a newly implemented algorithm to cal-

culate exactly the minimum number of hybridization events that explains

two phylogenetic gene trees. Unlike previous algorithms, HybridNumber

is not a heuristic, and its solution is not restricted in any way. Calculat-

ing this minimum number is a computationally hard problem, and so if the

initial two gene trees only share a few similarities, then in many cases the

exact calculation of the hybridization number is computationally infeasible.

However, if the two gene trees share a number of common features—pendant

subtrees, chains, or clusters—which is likely for many biological examples,

the new algorithm performs remarkably well and the hybridization number

can be found in reasonable time.

Note that HybridNumber calculates a lower bound for the number of

hybridization events to explain the differences between two phylogenetic gene

trees (assuming that hybridization is the only cause of incongruence between

the two trees). It is possible that the real number of hybridization events

that happened during the evolution of the collection of present-day species
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under consideration is underestimated. Indeed, it is possible that some hy-

bridization events are never recognized. Nevertheless, the algorithm provides

an important first step towards an understanding of the extent to which hy-

bridization has influenced evolution.

Of course, in addition to computing the hybridization number of two

rooted phylogenetic X-trees S and T , one is also interested in constructing

hybridization networks that realize this number. This can be efficiently done

from a minimum-sized acyclic-agreement forest F for S and T . Intuitively,

one takes the tree in F containing the root of S and T , and then systemati-

cally adjoins the rest of the trees in F as follows. At each step, adjoin a tree

from F whose root is not the descendant (relative to either S or T ) of any

tree not already adjoined. Each tree in F is adjoined with two edges to the

current hybridization network so that the resulting hybridization network

displays the appropriate restrictions of S and T .

Finally, it is clear that extending this work to allow for more than two

trees in the input is important. Such extensions are discussed in the corre-

sponding author’s PhD thesis.
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Appendix

A Pseudocode

Here we present the pseudocode of HybridNumber. For a rooted binary

phylogenetic X-tree T and a subset A of X, we denote the minimal subtree

26



of T connecting the elements in A by T (A). Further, we denote the tree

formed by replacing a cluster A with the new leaf c by T [A → c]. If B is a

subset of X, we use T [−B] to denote the phylogenetic tree obtained from T

by deleting each of the elements in B and suppressing any resulting degree-

two vertex. Finally, F(T , E) denotes the forest obtained from the tree T

by deleting the edges in the set E. Because of the chain reduction rule, the

input to HybridNumber includes a weight function w on pairs of taxa; this

can be taken to be zero for all pairs in the initial input.

�

�

�

�

Algorithm A.1: HybridNumber(S, T , w)

(S, T , w)← SubtreeReduction(S, T , w)

(S, T , w)← ChainReduction(S, T , w)

if ∃ a minimal common cluster C of S and T and

1 < |C| < number of taxa of S

do




(S1, T1, w1,S2, T2, w2)← ClusterReduction(S, T , w)

h1 ← ExhaustiveSearch(S1, T1, w1)

h2 ← HybridNumber(S2, T2, w2)

h← h1 + h2

else

do h← ExhaustiveSearch(S, T , w)

return (h)
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�

�

�

�

Algorithm A.2: SubtreeReduction(S, T , w)

A← maximal common subtree of S and T

if |A| > 1

do




S ′ ← S[A→ a]

T ′ ← T [A→ a]

(S, T , w)← SubtreeReduction(S ′, T ′, w)

return (S, T , w)

�

�

�

�

Algorithm A.3: ChainReduction(S, T , w)

(a1, . . . , an)← maximal common chain of S and T

if n ≥ 3

do




weight← ∑n−1
i=1 w(ai, ai+1)

w(a, b)← weight + (n− 2)

S ′ ← (S[{a1} → a, {a2} → b,−{a3, . . . , an}]

T ′ ← (T [{a1} → a, {a2} → b,−{a3, . . . , an}]

w′ ← {w(a, b)} ∪ w restricted to pairs not in {a1, . . . , an}

(S, T , w)← ChainReduction(S ′, T ′, w′)

return (S, T , w)
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�

�

�

Algorithm A.4: ClusterReduction(S, T , w)

C ← minimal common cluster of S and T

S1 ← S(C)

S2 ← S[C → c]

T1 ← T (C)

T2 ← T [C → c]

w1 ← w restricted to pairs of taxa in C

w2 ← w restricted to pairs of taxa not in C

return (S1, T1, w1,S2, T2, w2)
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�

�

�

Algorithm A.5: ExhaustiveSearch(S, T , w)

if S ∼= T return (0)

h← number of leaves of S

i← 0

repeat

for each E a subset of the edges of S such that |E| = i

do




F ← F(S, E)

if F is an acyclic-agreement forest of S and T

do




P ← {(a, b) : a, b are isolated taxa in F}

h′ ← i +
∑

(a,b)∈P w(a, b)

if h′ < h

do h← h′

i← i + 1

until i ≥ h

return (h)

Remarks

1. The actual implemented algorithms contain various small improve-

ments compared to the pseudocode in order to improve running time.

Whilst these changes do not affect the theoretical ‘worst case’ running

time, in practice they are beneficial. An example is that no agreement

forest has an isolated internal vertex, hence in the exhaustive search

we do not need to consider subsets of edges of size i (to delete from S)

which contain the three edges incident with a particular vertex.

2. In HybridNumber, following a call to the cluster reduction, the clus-
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ter removed cannot be reduced any further using the reductions, in

which case we immediately call ExhaustiveSearch. However, it may

now be possible to further reduce the remainder of the trees and so we

call HybridNumber.

3. In ExhaustiveSearch, if we have found a forest of weight h formed

by deleting fewer than h edges, we must run until we have checked all

possible forests resulting from the deletion of up to h edges in case there

exists one of lower weight. This check is a consequence of the way in

which the chain reduction works.
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