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Abstract

Given a set R of rooted phylogenetic trees on overlapping taxa, it takes polynomial time to decide whether or not there
exists a rooted phylogenetic tree that is compatible with R. Since not all evolutionary histories for a set of species can
be explained by a single tree, it is natural to ask for the minimum number of rooted phylogenetic trees needed such
that each tree in R is compatible with at least one tree. This paper shows that it is computationally hard to compute
this minimum number. In particular, if R contains rooted triples (rooted binary phylogenetic trees on three leaves),
it is NP-complete to decide whether there exist two rooted phylogenetic trees such that each rooted triple in R is
compatible with at least one of the two trees. Furthermore, for a set Σ of binary characters and a positive integer k, we
show that to decide if there exists a set P of k rooted phylogenetic trees such that each character in Σ is compatible
with at least one tree in P is NP-complete for all k ≥ 3, but solvable in polynomial time for k = 2. This generalizes
the result for k = 1, where it is well-known to be polynomial time.
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1. Introduction to tree and character compatibility

Ever since Charles Darwin laid the foundations for our current understanding of evolution, biologists have been
interested in the reconstruction of phylogenetic (evolutionary) trees that correctly represent the ancestral history of
a set of species. While Darwin was mainly aiming at illuminating the diversity he observed in nature, nowadays
the study of phylogenetic trees also influences new research fields such as metagenomics [10], as well as medical
related questions since, for example, a profound knowledge of the evolution of a certain pathogen (e.g. the influenza
virus [11]) is often an essential first step in the development of any medication against it.

With the growing amount of available molecular sequence data, researchers now reconstruct phylogenetic trees
with several thousand leaves, and in doing so frequently make use of supertree algorithms [3] as they allow one to
easily amalgamate the analyses of different studies. Supertree methods combine a set of source trees on overlapping
taxa sets into a single parent tree. If this tree captures all the ancestral information of the source trees, then the source
trees are compatible and do not contain any contradictory information. In the context of rooted phylogenetic trees, it is
computationally easy (i.e. polynomial-time solvable) to decide if a set of rooted phylogenetic trees is compatible and,
if so, to construct a parent tree [1, 12]. In contrast, the problem is NP-complete for source trees that are unrooted [13].
A similar dichotomy also exists for phylogenetic analyses whose initial input is a set of characters rather than a set of
trees. Characters describe attributes of the species under consideration and can be morphological (e.g. wings versus
no-wings) or molecular (e.g. the nucleotide at a certain position on a DNA sequence). Informally, a set of characters is
compatible if there is a phylogenetic tree T that realizes each character c in the set without any reverse or convergent
character state transitions, in which case c is said to be convex on T (for a formal definition, see Section 2). For a
motivating example of a character compatibility study, we refer the interested reader to Holland et al. [8], who have

Email addresses: linz@informatik.uni-tuebingen.de (Simone Linz), stjohn@lehman.cuny.edu (Katherine St. John),
charles.semple@canterbury.ac.nz (and Charles Semple)

Preprint submitted to Theoretical Computer Science January 14, 2014



recently investigated the concerted evolution of cormorants and shags by analyzing groups of mutually compatible
characters. While a polynomial-time algorithm exists to determine if a set of 2-state characters is compatible and, if
so, to reconstruct a tree on which each character in the input is convex [7], this problem becomes NP-complete for
r-state characters if r is unbounded [4, 13].

Historically, given an initial input, one constructs a single phylogenetic tree to represent the ancestral history of
the present-day species under consideration. Ideally, the resulting tree is consistent with the input, that is, the input
is compatible. However, in practice, sets of rooted phylogenetic trees and 2-state characters are rarely compatible.
For many sets of species, this incompatibility is not due to some type of error, but reflects the fact that the species’
ancestral past cannot be explained by a single tree due to processes such as horizontal gene transfer or hybridization.
To this end, we investigate the problem of calculating the minimum size of a set P of phylogenetic trees such that
each tree (resp. character) in a set of rooted phylogenetic trees (resp. 2-state characters) is compatible with at least
one tree in P and settle several questions related to the complexity of this problem. Details of this problem and
the questions addressed are formally described in the next section. Lastly, we remark that Baroni et al. [2] have
investigated a similar problem that asks for when a set of so-called (incompatible) clusters can be explained by two
rooted phylogenetic trees.

2. Preliminaries

This section provides preliminary definitions and formally states several problems whose complexity is analyzed
in the subsequent two sections. Unless otherwise stated, notation and terminology follow [12].

Phylogenetic trees. A phylogenetic X-tree T is a tree whose internal vertices have degree at least three and whose
leaf set is X. In the rooted setting, a rooted phylogenetic X-tree T is a rooted tree in which the root has degree at least
two, all other interior vertices have degree at least three, and whose leaf set is X. Furthermore, a rooted phylogenetic
X-tree is binary if, apart from the root which has degree two, all other interior vertices have degree three. The leaf set
X of a (rooted) phylogenetic tree T is often referred to as the label set of T and is denoted by L(T ). For a collection
R of (rooted) phylogenetic trees, we use L(R) to denote the union

⋃
T∈RL(T ). In Section 3, we will exclusively deal

with rooted phylogenetic trees, while the material presented in Section 4 is concerned with (unrooted) phylogenetic
trees.

Let T be a rooted phylogenetic X-tree, and let {u, v} be an edge in T such that u lies on the path from the root
of T to v. We say that u is the parent of v and v is a child of u. Now, let X′ be a subset of X. The restriction of T
to X′, denoted by T |X′, is the rooted phylogenetic tree that is obtained from the smallest subtree of T that connects
all leaves labeled with elements in X′ by contracting non-root degree-2 vertices. Further, the most recent common
ancestor of X′ in T , denoted by mrcaT (X′), is the vertex v in T such that

(i) the set of leaf descendants of v is a superset of X′, and
(ii) there exists no vertex v′ in T that is a descendant of v and whose set of leaf descendants is a superset of X′.

Lastly, let x1 and x2 be two elements, and let O = (x3, x4, . . . , xn) be a tuple. Furthermore, let T be a rooted phyloge-
netic tree with label set {x1, x2, . . . , xn}. If x1 and x2 have the same parent in T and if, for each i ∈ {2, 3, . . . , n− 1}, the
parent of xi is a child of the parent of xi+1, thenT is said to be the caterpillar on (x1, x2, . . . , xn) or, for short, (x1, x2,O).

Rooted triples. A rooted binary phylogenetic tree on three leaves is called a rooted triple. A rooted triple with leaves
labeled a, b, and c is denoted ab|c (or, equivalently, ba|c), if the path from a to b does not intersect the path from c to
the root.

Characters. An r-state full character on X (or r-state character for short) is a function c : X → C, where
C = {s1, s2, . . . , sr} is a collection of character states. If r = 2, then c is called a binary or 2-state character. We
say that c is convex on a phylogenetic X-tree T with vertex set V if there exists a function c̄ : V → {s1, s2, . . . , sr}
which extends c such that, for each i ∈ {1, 2, . . . , r}, the subgraph of T induced by {v ∈ V : c̄(v) = si} is connected.
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Biologically speaking, if a character c is convex on a phylogenetic tree T , then c can be explained without any reverse
or convergent character state transitions.

Compatibility. Let T and T ′ be two rooted phylogenetic trees on X and X′, respectively, where X′ ⊆ X. Then T
displays T ′ if T ′ is a restriction of T . Intuitively, if T displays T ′, then all of the ancestral relationships represented
by T ′ are represented by T . Furthermore, T displays a set R of rooted phylogenetic trees if each element in R is
displayed by T , in which case T is said to be compatible with R. Moreover, a set R of rooted phylogenetic trees is
said to be k-compatible if there exists a collection P of at most k rooted phylogenetic trees such that each element in R
is displayed by at least one tree inP. IfR is not 1-compatible, we will sometimes write thatR is incompatible for short.

Now, let Σ be a collection of binary characters on X. Then Σ is compatible if there exists a phylogenetic X-tree
on which each character in Σ is convex. A consequence of this definition and the Splits-Equivalence Theorem [5] is
the following four-gamete condition that characterizes when a pair of binary characters is incompatible. Let c1 : X →
{0, 1} and c2 : X → {0, 1} be two binary characters on X. Then, c1 and c2 are incompatible if and only if there exists a
subset {x1, x2, x3, x4} ⊆ X such that the following properties are satisfied:

(i) c1(x1) = 1 and c2(x1) = 1,
(ii) c1(x2) = 1 and c2(x2) = 0,
(iii) c1(x3) = 0 and c2(x3) = 1, and
(iv) c1(x4) = 0 and c2(x4) = 0.

Furthermore, Buneman proved that a collection Σ of binary characters is compatible if no pair of characters in Σ is
incompatible [5]. Similar to the concept of k-compatibility for a set of rooted triples, we say that a set Σ of binary
characters is k-compatible if there exists a collection P of at most k phylogenetic trees such that each element in Σ is
convex on at least one tree in P. Equivalently, Σ is k-compatible if Σ can be partitioned into at most k blocks such
that each block consists of a set of compatible characters. If Σ is not 1-compatible, we will sometimes write that Σ is
incompatible for short.

The concept of k-compatibility for trees and characters leads to the following two decision problems:

k-Tree-Compatibility
Instance. A set R of rooted phylogenetic trees and a positive integer k.
Question. Is R k-compatible?

k-Character-Compatibility
Instance. A set Σ of binary characters and a positive integer k.
Question. Is Σ k-compatible?

While 1-Tree-Compatibility is solvable in polynomial time [1, 12], we show in Section 3 that 2-Tree-Compatibility is
NP-complete by establishing the result for the special case when R is a set of rooted triples. In turn this implies that
the following optimization problem is NP-hard.

Min-k-Tree-Compatibility
Instance. A set R of rooted phylogenetic trees.
Goal. Find a collection P = {T1,T2, . . . ,Tk} of rooted phylogenetic trees such that each tree in R is displayed by an
element in P and k is minimized.
Measure. The value of k.

The problem 1-Character-Compatibility is equivalent to the well-known perfect phylogeny problem for binary char-
acters, for which a polynomial-time algorithm exists [7]. In Section 4, we show that k-Character-Compatibility is
NP-complete for any k > 2 but polynomial-time solvable for k = 2. Section 5 finishes the paper with some concluding
remarks.
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Figure 1: The set {wx|y,wx|z, yz|w, yz|x,wy|x,wy|z, xz|w, xz|y} of rooted triples is 2-definitive for the rooted phylogenetic trees S1 and S2.

Theorem 3.1. The optimization problem Min-k-Tree-Compatibility is NP-hard.

To show that the theorem holds, we use a polynomial-time reduction from the well-known NP-complete problem
Set Splitting [6] to 2-Tree-Compatibility, when an instance of the latter problem consists of a set of rooted triples.
The NP-completeness of 2-Tree-Compatibility implies NP-hardness of Min-k-Tree-Compatibility. The decision prob-
lem Set Splitting is as follows.

Set Splitting
Instance. A set S = {s1, s2, . . . , sn} and a collection C = {C1,C2, . . . ,Cm} of subsets of S , where |C j| = 3 for each
j 2 {1, 2, . . . ,m}.
Question. Does there exist a bipartition of S into S 1 and S 2 such that C j \ S 1 , ; and C j \ S 2 , ; for each C j 2 C?

If the answer to an instance (S ,C) of Set Splitting is ‘yes’, then we say that (S ,C) has a set splitting (S 1, S 2).

We begin the reduction with a lemma. Let R be a set of rooted triples that is 2-compatible with two rooted
phylogenetic trees T1 and T2 with L(T1) = L(T2) = L(R). If T1 and T2 are the unique such trees, then R is said to
be 2-definitive. Note that, if R is 2-definitive, then T1 and T2 are necessarily binary.

Lemma 3.2. The set R = {wx|y,wx|z, yz|w, yz|x,wy|x,wy|z, xz|w, xz|y} of rooted triples is 2-definitive.

Proof. It is easily checked that each of the rooted triples in R is displayed by either S1 or S2 as shown in Figure 1.
Thus R is 2-compatible. To see that R is 2-definitive, let T1 and T2 be two rooted phylogenetic trees both with label
set {w, x, y, z} such that each rooted triple in R is displayed by either T1 or T2. Without loss of generality, we may
assume that T1 displays wx|y and that T2 displays wy|x. Since yz|x and xz|y are incompatible, one of them is displayed
by T1 and one of them is displayed by T2. Assume that xz|y is displayed by T1 and that yz|x is displayed by T2. Then,
T1 does not display yz|w or wy|z, and it follows that these two incompatible rooted triples are both displayed by T2; a
contradiction. Thus T1 displays wx|y and yz|x, and T2 displays wy|x and xz|y; thereby implying that T1 is isomorphic
to S1 and T2 is isomorphic to S2. This completes the proof of the lemma. 2

The next theorem establishes the NP-completeness of 2-Tree-Compatibility. The reduction that we use for the
proof has a flavor that is similar to that in [8, Theorem 7], which shows that it is computationally hard to determine if
a set of rooted triples is compatible with a so-called ‘simple phylogenetic network’.

Theorem 3.3. The decision problem 2-Tree-Compatibility is NP-complete.

Proof. We establish the theorem by showing that 2-Tree-Compatibility is NP-complete for an instance that consists
of a set of rooted triples. Since a set of rooted triples is a special case of a set of rooted phylogenetic trees, this
immediately implies NP-completeness of 2-Tree-Compatibility in its general form. Let R be a set of rooted triples.
The problem 2-Tree-Compatibility is clearly in NP because, given two rooted phylogenetic trees T1 and T2, it can be
verified in polynomial time whether or not each rooted triple in R is displayed by T1 or T2.

We now describe a polynomial-time reduction from Set Splitting to 2-Tree-Compatibility. Let (S ,C) be an
instance of Set Splitting, where S = {s1, s2, . . . , sn} and C = {C1,C2, . . . ,Cm} with |C j| = 3. Without loss of

4

Figure 1: The set {wx|y,wx|z, yz|w, yz|x,wy|x,wy|z, xz|w, xz|y} of rooted triples is 2-definitive for the rooted phylogenetic trees S1 and S2.

3. Tree compatibility across several trees

In this section, we establish the following theorem.

Theorem 3.1. The optimization problem Min-k-Tree-Compatibility is NP-hard.

To show that the theorem holds, we use a polynomial-time reduction from the well-known NP-complete problem
Set Splitting [6] to 2-Tree-Compatibility, when an instance of the latter problem consists of a set of rooted triples.
The NP-completeness of 2-Tree-Compatibility implies NP-hardness of Min-k-Tree-Compatibility. The decision prob-
lem Set Splitting is as follows.

Set Splitting
Instance. A set S = {s1, s2, . . . , sn} and a collection C = {C1,C2, . . . ,Cm} of subsets of S , where |C j| = 3 for each
j ∈ {1, 2, . . . ,m}.
Question. Does there exist a bipartition of S into S 1 and S 2 such that C j ∩ S 1 , ∅ and C j ∩ S 2 , ∅ for each C j ∈ C?

If the answer to an instance (S ,C) of Set Splitting is ‘yes’, then we say that (S ,C) has a set splitting (S 1, S 2).

We begin the reduction with a lemma. Let R be a set of rooted triples that is 2-compatible with two rooted
phylogenetic trees T1 and T2 with L(T1) = L(T2) = L(R). If T1 and T2 are the unique such trees, then R is said to
be 2-definitive. Note that, if R is 2-definitive, then T1 and T2 are necessarily binary.

Lemma 3.2. The set R = {wx|y,wx|z, yz|w, yz|x,wy|x,wy|z, xz|w, xz|y} of rooted triples is 2-definitive.

Proof. It is easily checked that each of the rooted triples in R is displayed by either S1 or S2 as shown in Figure 1.
Thus R is 2-compatible. To see that R is 2-definitive, let T1 and T2 be two rooted phylogenetic trees both with label
set {w, x, y, z} such that each rooted triple in R is displayed by either T1 or T2. Without loss of generality, we may
assume that T1 displays wx|y and that T2 displays wy|x. Since yz|x and xz|y are incompatible, one of them is displayed
by T1 and one of them is displayed by T2. Assume that xz|y is displayed by T1 and that yz|x is displayed by T2. Then,
T1 does not display yz|w or wy|z, and it follows that these two incompatible rooted triples are both displayed by T2; a
contradiction. Thus T1 displays wx|y and yz|x, and T2 displays wy|x and xz|y; thereby implying that T1 is isomorphic
to S1 and T2 is isomorphic to S2. This completes the proof of the lemma. 2

The next theorem establishes the NP-completeness of 2-Tree-Compatibility. The reduction that we use for the
proof has a flavor that is similar to that in [9, Theorem 7], which shows that it is computationally hard to determine if
a set of rooted triples is compatible with a so-called ‘simple phylogenetic network’.

Theorem 3.3. The decision problem 2-Tree-Compatibility is NP-complete.
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Figure 2: The rooted phylogenetic trees T1 and T2 that are reconstructed from a set splitting in the proof of Theorem 3.3, where the unlabeled
leaves are labeled with the elements in O1 and O2 (for details, see text).

generality, we may assume that, for each si 2 S , there exists a C j 2 C such that si 2 C j. Throughout the proof, we
write {s j

a, s
j
b, s

j
c} to denote a set C j 2 C. We next define four sets of rooted triples:

(1) Let R1 be the set
R1 = {wx|y,wx|z, yz|w, yz|x,wy|x,wy|z, xz|w, xz|y}.

(2) Each set C j = {s j
a, s

j
b, s

j
c} is represented by six rooted triples in

R2 =
[

C j2C
{wsj

a|s j
b,wsj

b|s j
c,wsj

c|s j
a, zs j

a|s j
b, zs j

b|s j
c, zs j

c|s j
a}.

(3) Each si 2 S is represented by 2m rooted triples in

R3 =
[

si2S
{s1

i w|z, s1
i z|w, s2

i w|z, s2
i z|w, . . . , sm

i w|z, sm
i z|w}.

(4) Each si 2 S is represented by 2
⇣

m
2

⌘
rooted triples in

R4 =
[

si2S
{s1

i s2
i |w, s1

i s2
i |z, s1

i s3
i |w, s1

i s3
i |z, . . . , s1

i , s
m
i |w, s1

i sm
i |z, s2

i s3
i |w, s2

i s3
i |z, . . . , sm�1

i sm
i |w, sm�1

i sm
i |z}.

Now, let
R = R1 [ R2 [ R3 [ R4

be an instance of 2-Tree-Compatibility. Noting that |R| is in the order of O(m2n), the reduction can be carried out in
polynomial time.

The remainder of the proof essentially consists of proving the following claim.

Claim. (S ,C) has a set splitting if and only if R is 2-compatible.

First, suppose that (S ,C) has a set splitting (S 1, S 2). Let S 01 = {s j
i : si 2 S 1 and j 2 {1, . . . ,m}} and, similarly, let

S 02 = {s j
i : si 2 S 2 and j 2 {1, . . . ,m}}. Furthermore, for each ` 2 {1, 2}, let O` be an ordering on the elements in S 0`

such that, for each C j, precisely one of the following holds:

(i) If s j
a, s

j
b 2 S 0`, then s j

a precedes s j
b in O`.

(ii) If s j
b, s

j
c 2 S 0`, then s j

b precedes s j
c in O`.

(iii) If s j
a, s

j
c 2 S 0`, then s j

c precedes s j
a in O`.

Note that not all three of s j
a, s j

b, and s j
c are elements of S 0` since (S 1, S 2) is a set splitting of (S ,C). Now, let T1 be

the rooted phylogenetic tree obtained from the two caterpillars C1 on (w, x,O1) and C01 on (y, z,O2) by creating a new
vertex ⇢1 and adjoining the root vertices of C1 and C01, respectively, to ⇢1 via two new edges. Similarly, let T2 be
the rooted phylogenetic tree obtained from the two caterpillars C2 on (w, y,O2) and C02 on (x, z,O1) by creating a new
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Figure 2: The rooted phylogenetic trees T1 and T2 that are reconstructed from a set splitting in the proof of Theorem 3.3, where the unlabeled
leaves are labeled with the elements in O1 and O2 (for details, see text).

Proof. We establish the theorem by showing that 2-Tree-Compatibility is NP-complete for an instance that consists
of a set of rooted triples. Since a set of rooted triples is a special case of a set of rooted phylogenetic trees, this
immediately implies NP-completeness of 2-Tree-Compatibility in its general form. Let R be a set of rooted triples.
The problem 2-Tree-Compatibility is clearly in NP because, given two rooted phylogenetic trees T1 and T2, it can be
verified in polynomial time whether or not each rooted triple in R is displayed by T1 or T2.

We now describe a polynomial-time reduction from Set Splitting to 2-Tree-Compatibility. Let (S ,C) be an
instance of Set Splitting, where S = {s1, s2, . . . , sn} and C = {C1,C2, . . . ,Cm} with |C j| = 3. Without loss of
generality, we may assume that, for each si ∈ S , there exists a C j ∈ C such that si ∈ C j. Throughout the proof, we
write {s j

a, s
j
b, s

j
c} to denote a set C j ∈ C. We next define four sets of rooted triples:

(1) Let R1 be the set
R1 = {wx|y,wx|z, yz|w, yz|x,wy|x,wy|z, xz|w, xz|y}.

(2) Each set C j = {s j
a, s

j
b, s

j
c} is represented by six rooted triples in

R2 =
⋃

C j∈C
{ws j

a|s j
b,ws j

b|s j
c,ws j

c|s j
a, zs j

a|s j
b, zs j

b|s j
c, zs j

c|s j
a}.

(3) Each si ∈ S is represented by 2m rooted triples in

R3 =
⋃

si∈S
{s1

i w|z, s1
i z|w, s2

i w|z, s2
i z|w, . . . , sm

i w|z, sm
i z|w}.

(4) Each si ∈ S is represented by 2
(

m
2

)
rooted triples in

R4 =
⋃

si∈S
{s1

i s2
i |w, s1

i s2
i |z, s1

i s3
i |w, s1

i s3
i |z, . . . , s1

i , s
m
i |w, s1

i sm
i |z, s2

i s3
i |w, s2

i s3
i |z, . . . , sm−1

i sm
i |w, sm−1

i sm
i |z}.

Now, let
R = R1 ∪ R2 ∪ R3 ∪ R4

be an instance of 2-Tree-Compatibility. Noting that |R| is in the order of O(m2n), the reduction can be carried out in
polynomial time.

The remainder of the proof essentially consists of proving the following claim.

Claim. (S ,C) has a set splitting if and only if R is 2-compatible.

First, suppose that (S ,C) has a set splitting (S 1, S 2). Let S ′1 = {s j
i : si ∈ S 1 and j ∈ {1, . . . ,m}} and, similarly, let

S ′2 = {s j
i : si ∈ S 2 and j ∈ {1, . . . ,m}}. Furthermore, for each ` ∈ {1, 2}, let O` be an ordering on the elements in S ′`

such that, for each C j, precisely one of the following holds:
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(i) If s j
a, s

j
b ∈ S ′`, then s j

a precedes s j
b in O`.

(ii) If s j
b, s

j
c ∈ S ′`, then s j

b precedes s j
c in O`.

(iii) If s j
a, s

j
c ∈ S ′`, then s j

c precedes s j
a in O`.

Note that not all three of s j
a, s j

b, and s j
c are elements of S ′` since (S 1, S 2) is a set splitting of (S ,C). Now, let T1 be

the rooted phylogenetic tree obtained from the two caterpillars C1 on (w, x,O1) and C′1 on (y, z,O2) by creating a new
vertex ρ1 and adjoining the root vertices of C1 and C′1, respectively, to ρ1 via two new edges. Similarly, let T2 be
the rooted phylogenetic tree obtained from the two caterpillars C2 on (w, y,O2) and C′2 on (x, z,O1) by creating a new
vertex ρ2 and adjoining the root vertices of C2 and C′2, respectively, to ρ2 via two new edges. This construction is
illustrated in Figure 2.

We next show that each rooted triple in R is displayed by either T1 or T2. Clearly, by construction, either T1 or
T2 displays each rooted triple in R1. Furthermore, since S 1 and S 2 is a set splitting of (S ,C), two elements of each
C j = {s j

a, s
j
b, s

j
c} are contained in S ` while the remaining element is contained in S `′ , where {`, `′} = {1, 2}. Now,

because (i), (ii), or (iii) holds, a routine check shows that, for each C j, each of the corresponding six rooted triples in
R2 is displayed by either T1 or T2. In particular, for any pair (i, i′) ∈ {(a, b), (b, c), (c, a)}, the rooted triple ws j

i |s j
i′ is

displayed by T1 (resp. T2) if and only if the rooted triple zs j
i |s j

i′ is displayed by T2 (resp. T1). Turning to the rooted
triples that are contained in R3, we observe that, for each element s j

i in S ′1, the rooted triple s j
i w|z is displayed by T1

while the rooted triple s j
i z|w is displayed by T2 and, similarly, for each element s j

i in S ′2, the rooted triple s j
i w|z is

displayed by T2 while the rooted triple s j
i z|w is displayed by T1. Hence, all rooted triples in R3 are displayed by either

T1 or T2. Lastly, noting that {s1
i , s

2
i , . . . , s

m
i } ⊆ S ′` for some ` ∈ {1, 2}, it is easily checked that, for each i ∈ {1, 2, . . . , n},

the rooted triples in {
s j

i s j′
i |z : j, j′ ∈ {1, 2, . . . ,m} and j < j′

}

are displayed by T` while the rooted triples in
{
s j

i s j′
i |w : j, j′ ∈ {1, 2, . . . ,m} and j < j′

}

are displayed by T`′ , where {`, `′} = {1, 2}. Thus, each rooted triple in R4 is displayed by either T1 or T2. Since each
rooted triple in R is displayed by either T1 or T2, it follows that R is 2-compatible.

Second, suppose that R is 2-compatible. Let T1 and T2 be two rooted phylogenetic trees such that each rooted
triple in R is displayed by either T1 or T2. Without loss of generality, we may assume that T1 and T2 are binary. To
ease reading throughout this part of the proof, let i ∈ {1, 2, . . . , n}, and let j ∈ {1, 2, . . . ,m}. By Lemma 3.2, the set
R1 is 2-definitive and it immediately follows that T1|{w, x, y, z} and T2|{w, x, y, z} are the two trees that are shown in
Figure 1. Furthermore, since, for each fixed i and j, the two rooted triples s j

i w|z and s j
i z|w are incompatible, we have

L(T1) = L(T2).

Now, for ` ∈ {1, 2}, assume that the path from the root of T` to a leaf s j
i does not contain mrcaT` ({w, z}). Then,

the two incompatible rooted triples s j
i w|z and s j

i z|w are both displayed by T`′ , where {`, `′} = {1, 2}; a contradiction.
Therefore, we may assume for the remainder of the proof that the roots of T1 and T2 coincide with mrcaT1 ({w, z}) and
mrcaT2 ({w, z}), respectively. In the following, we say that s j

i is on the w-side of T1 (resp. T2) if the path in T1 (resp.
T2) from the root to w intersects with the path in T1 (resp. T2) from the root to s j

i at a vertex other than the root.
Similarly, we say that s j

i is on the z-side of T1 (resp. T2) if the path in T1 (resp. T2) from the root to z intersects with
the path in T1 (resp. T2) from the root to s j

i at a vertex other than the root.

We next show that, for any fixed i, each element in S i = {s j
i : j ∈ {1, 2, . . . ,m}} is on the w-side of T1 or each

such element is on the z-side of T1. Assume the contrary, i.e. for some fixed i, there exists a leaf s j
i ∈ S i that is on

the w-side of T1 and there exists a leaf s j′
i ∈ S i that is on the z-side of T1 with j , j′. Hence, the four rooted triples

s j
i s j′

i |w, s j
i s j′

i |z, s j
i z|w, and s j′

i w|z are all displayed by T2. Since the root of T2 coincides with mrcaT2 ({w, z}), we may
assume that mrcaT2 ({s j

i , s
j′
i }) does not lie on the path from the root of T2 to w or z. It now follows that s j

i z|w or s j′
i w|z
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is not displayed by T2 depending on whether the path from the root of T2 to w or the path from the root of T2 to z
intersects with the path from the root of T2 to mrcaT2 ({s j

i , s
j′
i }) at a vertex other than the root; again, a contradiction.

Thus, the elements in S i are either all on the w-side of T1 or all on the z-side of T1. Suppose that each element in S i is
on the w-side of T1, then, for each s j

i ∈ S i, the rooted triple s j
i w|z is displayed by T1; thereby implying that the rooted

triple s j
i z|w is displayed by T2. It is now easily checked that, each element in S i is on the z-side of T2. Applying a

similar argument for when each element in S i is on the z-side of T1, we derive the following fact.

(F) Each element in S i is on the w-side (resp. z-side) of T1 if and only if each element in S i is on the z-side (resp.
w-side) of T2.

Now, let W1 and Z1 be the two rooted phylogenetic trees that are obtained from T1 by deleting the two edges
that are incident with its root such that w ∈ L(W1) and z ∈ L(Z1). Analogously, let W2 and Z2 be the two
rooted phylogenetic trees that are obtained from T2 by deleting the two edges that are incident with its root such that
w ∈ L(W2) and z ∈ L(Z2). By (F), we have

L(W1) − {w, x} = L(Z2) − {x, z} and L(Z1) − {y, z} = L(W2) − {w, y}.

We complete the proof by showing that (W,Z) is a set splitting for (S ,C), where W = {si ∈ S : s1
i ∈ L(W1)} and

Z = {si ∈ S : s1
i ∈ L(Z1)}. Clearly, W ∪ Z = S and W ∩ Z = ∅. Now, assume that there exists a C j ∈ C for which

C j ∩ W = ∅ or C j ∩ Z = ∅. If C j ∩ W = ∅, then s j
a, s j

b, and s j
c are all on the z-side of T1 and, by (F), are all on the

w-side of T2. Since T1 does not display any of the rooted triples ws j
a|s j

b, ws j
b|s j

c, and ws j
c|s j

a, and a straightforward
check shows that T2 displays at most two such rooted triples, this contradicts that each rooted triple in R is displayed
by either T1 or T2. Similarly, if C j ∩ Z = ∅, then s j

a, s j
b, and s j

c are all on the w-side of T1 and, by (F), are all on the
z-side of T2. Since T2 does not display any of the rooted triples ws j

a|s j
b, ws j

b|s j
c, and ws j

c|s j
a, and T1 displays at most

two such rooted triples, this again contradicts that each rooted triple in R is displayed by T1 or T2. This establishes
that (W,Z) is a set splitting for (S ,C) and completes the proof of the theorem 2

We are now in a position to establish Theorem 3.1 which is an almost immediate consequence of Theorem 3.3.

Proof of Theorem 3.1. Assume that Min-k-Tree-Compatibility is not NP-hard. Then, an instance I of 2-Tree-
Compatibility can be solved by using a polynomial-time algorithm for Min-k-Tree-Compatibility and returning ‘yes’
if and only if the answer to Min-k-Tree-Compatibility for I is at most 2; a contradiction. 2

4. Character compatibility across several trees

In this section, we show that k-Character-Compatibility is NP-complete for any positive integer k > 2 while,
perhaps surprisingly, given the result of the last section, the problem is solvable in polynomial time for k = 2.

To establish the main result of this section,Theorem 4.3, we make use of the following decision problem.

Graph-k-Colorability
Instance. A graph G = (V, E) and a positive integer k ≤ |V |.
Question. Is G k-colorable (i.e. does there exist a function f : V → {1, 2, . . . , k′} with k′ ≤ k such that f (u) , f (v)
for each edge {u, v} ∈ E)?

This classical decision problem can be solved in polynomial time for k = 2 but is NP-complete for k > 2 [6]. Without
loss of generality, we may assume that an instance of Graph-k-Colorability always consists of a simple graph G.

For a collection Σ of binary characters, the incompatibility graph of Σ is the graph whose vertex set is Σ and where
an edge joins two characters precisely if they are incompatible. We denote this graph by GΣ. We next establish two
lemmas.
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Lemma 4.1. Let Σ be a collection of binary characters. Then Σ is k-compatible if and only if the incompatibility
graph GΣ is k-colorable.

Proof. Suppose Σ is k-compatible. Then there exists a partition of the vertex set of GΣ into at most k blocks
B1, B2, . . . , Bk′ with k′ ≤ k such that no edge in GΣ joins two vertices of the same block. Clearly, by assigning
all vertices of Bi to color Ci for each i ∈ {1, 2, . . . , k′}, we obtain a k′-coloring of GΣ and thus GΣ is k-colorable. Now,
suppose that GΣ is k-colorable. For each color Ci with i ∈ {1, 2, . . . , k′} and k′ ≤ k, let Bi be the set of vertices that
have color Ci. Since no edge in GΣ joins two vertices in Bi, it follows that the characters in Σ corresponding to vertices
in Bi are 1-compatible. Hence, Σ is k′-compatible and thus also k-compatible. 2

Lemma 4.2. Let G = (V, E) be a simple graph. There exists a collection of binary characters Σ whose incompatibility
graph GΣ is isomorphic to G.

Proof. Let O = (v1, v2, . . . , vk) be an ordering on the vertices of G with |V | = k. We construct a set S of 4 · |E|
sequences, each having length k and where position ` ∈ {1, 2, . . . , k} corresponds to the `th vertex in O. More precisely,
for each edge {vi, v j} in G, we assume without loss of generality that i < j and represent it by the following four
sequences in S :

S 1,1
i, j s1, s2, . . . , si−1, 1, si+1, . . . , s j−1, 1, s j+1, . . . , sk

S 1,0
i, j s1, s2, . . . , si−1, 1, si+1, . . . , s j−1, 0, s j+1, . . . , sk

S 0,1
i, j s1, s2, . . . , si−1, 0, si+1, . . . , s j−1, 1, s j+1, . . . , sk

S 0,0
i, j s1, s2, . . . , si−1, 0, si+1, . . . , s j−1, 0, s j+1, . . . , sk,

where each s` with ` < {i, j} has character state 0 in each of the four sequences. Let Σ be the set of characters induced
by S , i.e. we have a character c` for each column ` ∈ {1, 2, . . . , k} in S . Note that, for each sequence in S , the character
state 1 occurs at most twice.

We proceed by induction on the number |E| of edges in G. If G does not contain any edge, then S is the empty
set (i.e. it does not contain any character) and so the result is vacuously true for the base case. Now, let G′ be
the simple graph obtained from G by deleting an edge {vi, v j}, and let Σ′ be the set of characters induced by S −
{S 1,1

i, j , S
1,0
i, j , S

0,1
i, j , S

0,0
i, j }. For the purpose of induction, assume that the incompatibility graph GΣ′ is isomorphic to G′.

As the characters ci and c j are incompatible in Σ by the four-gamete condition, it follows that G is a subgraph of the
incompatibility graph GΣ. To show that G and GΣ are indeed isomorphic, assume that GΣ has an edge joining two
characters ci′ and c j′ while there is no edge {vi′ , v j′ } in G. Since the two characters ci′ and c j′ are incompatible, there
exists a sequence in S that has character state 1 for both ci′ and c j′ , a sequence that has character state 0 for both ci′

and c j′ , a sequence that has character state 1 for ci′ and character state 0 for c j′ , and a sequence that has character state
0 for ci′ and character state 1 for c j′ ; thereby contradicting that {vi′ , v j′ } is not an edge in G. It now follows that G and
GΣ are isomorphic. 2

The next theorem is an immediate consequence of Lemmas 4.1 and 4.2, and the fact that the decision problem
Graph-k-Colorability is NP-complete for any positive integer k > 2 and polynomial-time solvable for k ≤ 2 [6].

Theorem 4.3. The decision problem k-Character-Compatibility is NP-complete for any positive integer k > 2 and
polynomial-time solvable for k ≤ 2.

5. Concluding remarks

In this paper, we investigated the problem of computing the minimum size of a set P of rooted phylogenetic trees
such that each tree (resp. binary character) in a given set of rooted phylogenetic trees (resp. binary characters) is com-
patible with at least one tree in P. We established NP-hardness of solving an instance of the optimization problem
Min-k-Tree-Compatibility. However, while we have explicitly shown that it is computationally hard to decide whether
or not a set of rooted phylogenetic trees is 2-compatible, there appears to be no straightforward polynomial-time re-
duction to extend our result to 3-Tree-Compatibility and, ultimately, to k-Tree-Compatibility for k ≥ 3. This is, for
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example, in stark contrast to the problem Graph-k-Colorability for which a reasonably easy polynomial-time reduc-
tion from Graph-(k − 1)-Colorability to Graph-k-Colorability exists that gives the desired result for each k ≥ 4. A
complexity result for k-Tree-Compatibility with k ≥ 3 remains therefore open. Furthermore, for an input that consists
of a set of binary characters and a positive integer k > 2, we have shown that it is NP-complete to decide if there exists
a set P of at most k phylogenetic trees such that each character in the input is convex on some tree in P. However, for
k = 2, we have shown that this problem is polynomial-time solvable.
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